The inclusive cross section for the photoproduction of neutral pions has been measured as a function of the transverse momentum, rapidity, and Feynman x of the pizero mesons at an average photon--proton centre-of-mass energy of 208 GeV and for photon virtualities below Q^2=0.01 GeV^2. The pizero measurement extends the range covered by previous charged particle measurements at HERA by two units of rapidity in the photon direction down to a value of -5.5 in the gamma p centre-of-mass frame. The pizero transverse momentum distribution is well described over the whole measured range by a power law ansatz, while an exponential fit falls below the data at transverse momentum values above 1.5 GeV/c. Good agreement with the predictions of the Monte Carlo models PYTHIA and PHOJET is found. In the context of the PYTHIA model the data are inconsistent with large intrinsic transverse momentum values in the photon.
The inclusive PI0 photoproduction cross section in bias of rapidity and PT.Bin centre corrections have been applied and the errors are the quadratic sum o f the statistics and systematics (which dominate).
The inclusive PI0 photoproduction cross section as a function of PT for therapidity range -3.5 to -1.5. Bin centres are given in addition to limits. Error s are the quadratic sum of statistics and systematics.
The inclusive PI0 photoproduction cross section as a function of XL (the Feyman X variable) for the rapidity range -3.5 to -1.5. Bin centres are given as well as limits. Errors are the quadratic sum of statistics and systematics.
We report on the production of J/psi mesons in 530 and 800 GeV/c proton - Be collisions in the Feynman-x range 0.0 < xf < 0.6. The J/psi mesons were detected via decays into opposite sign muon pairs. Differential distributions for J/psi production have been measured as functions of xf, pT^2, and cosine of the Gottfried-Jackson decay angle. These distributions are compared with results on J/psi production obtained in 515 GeV/c pion - Be collisions, measured by the same experiment, as well as with results from other experiments using incident protons.
Differential XL distribution for J/PSI production in 530 GeV pBe collisions. Errors are combined statistics and systematics.
Differential PT**2 distribution for J/PSI production in 530 GeV pBe collisions. Errors are combined statistics and systematics.
Differential COS(THETA) distribution for J/PSI production in 530 GeV pBe collisions. Errors are combined statistics and systematics.
The production of charmed particles by Sigma- of 340 Gev/c momentum was studied in the hyperon beam experiment WA89 at the CERN-SPS, using the Omega-spectrometer. In two data-taking periods in 1993 and 1994 an integrated luminosity of 1600 microb^-1 on copper and carbon targets was recorded. From the reconstruction of 930 +- 90 charm particle decays in 10 decay channels production cross sections for D, antiD, Ds and Lambdac were determined in the region xF>0. Assuming an A^1 dependence of the cross section on the nucleon number, we calculate a total ccbar production cross section of sigma(x_F > 0) = 5.3+- 0.4(stat)+-1.0(syst)+1.0(Xi_c) microb per nucleon. The last term is an upper limit on the unknown contribution from charmed-strange baryon production.
Fits to the DSIG/DXL and DSIG/DPT**2 distributions in the range XL > 0. Theerrors shown are statistical only.. The fits are of the following form:. DSIG/DXL : Const*(1-X)**N. DSIG/DPT**2 : Const*EXP(-B*PT**2).
The production cross sections for anti-charmed and charmed hadrons in the range XL > 0. The Errors are statistical only.
The total CQUARK+CQUARKBAR cross section in the range XL > obtained as the weighted average of the sum of all the measured contributions to the charmed andanti-charmed hadron production in the previous table. second systematic (DSYS) error is due to the uncertainty in the contribution of XI/C production to the cross section.
We report on a measurement of the differential and total cross sections of inclusive production of Xi resonances in Sigma - nucleus collisions at 345 GeV/c.
Feynman X distribution for producton XI(1530)0 on copper and carbon. The quoted errors are statistical.
PT**2 distribution for XI(1530) producton on copper and carbon. The uoted errors are statistical.
Feynman X distribution (times BR) per nucleon for XI(1820) and XI(1950) production. The quoted errors are statistical.
We present the xF and pT differential cross sections of J/ψ and ψ′, respectively, in the ranges −0.05
Additional systematic error given above.
Additional systematic error given above.
Additional systematic error given above.
Inclusive cross sections for Ξ- hyperon production in high-energy Σ-, π- and neutron induced interactions were measured by the experiment WA89 at CERN. Secondary Σ- and π- beams with average momenta of 345 GeV/c and a neutron beam of 260 GeV/c were produced by primary protons of 450 GeV/c from the CERN SPS. The influence of the target mass on the Ξ- cross section is explored by comparing reactions on copper and carbon nuclei. Both single and double differential cross sections are presented as a function of the transverse momentum and the Feynman variable xF. A strong leading effect for Σ- produced by Σ- is observed.
No description provided.
No description provided.
No description provided.
We measure the differential cross sections with respect to Feynman x ( xF) and transverse momentum ( pT) for π, K, and p-induced charm meson production using fully reconstructed D+, D0, and Ds decays. The shapes of these cross sections are compared to the theoretical predictions for charm quark production of next-to-leading order perturbative QCD using modern parametrizations of the pion and nucleon parton distributions. We observe the differences expected in production induced by projectiles with different gluon distributions, harder distributions being indicated for mesons than for protons.
Additional systematic errors of 6 pct, 6 pct and 9 pct respectively for pi, K and p beams.
Additional systematic errors of 6 pct, 6 pct and 9 pct respectively for pi, K and p beams.
Result of fitting DSIG/dXL spectra with form (1-XL)**POWER.
We have studied the production of J/ψ and ψ(2S) charmonium mesons in 515 GeV/c π−Be collisions in the Feynman-x range 0.1
Statistical errors only. Normalization uncertainty is 12%.
Statistical errors only. Normalization uncertainty is 12%.
Statistical errors only. Normalization uncertainty is 12%.. Theta is the angle between the MU+ and the beam axis in the J/PSI restframe (Gottfried-Jackson decay angle).
A study of scaling violations in fragmentation functions performed by the ALEPH collaboration at LEP is presented. Data samples enriched in uds, c, b and gluon jets, respectively, together with measurements of the longitudinal and transverse inclusive cross sections are used to extract the fragmentation function for the gluon and for each flavour. The measurements are compared to data from experiments at energies between 22 GeV and 91 GeV and scaling violations consistent with QCD predictions are observed. From this, a measurement of the strong coupling constant α s ( Mz ) = 0.126 ±0.009 is obtained.
No description provided.
No description provided.
No description provided.
We report results from Fermilab experiment E769 on the differential cross sections of D*± charm vector mesons with respect to Feynman-x (xF) and transverse momentum (PT), and on the atomic mass dependence of the production. The D* mesons were produced by a 250 GeV π beam on a target of Be, Al, Cu, and W foils. The dσdxF distribution is fit by the form ((1−xF)n) with n=3.5±0.3±0.1, the dσdPT2 distribution by exp(−b×PT2) with b=0.70±0.07±0.04 GeV−2, and the cross section A dependence by Aα with α=1.00±0.07±0.02. These results are compared to the equivalent parameters for the production of pseudoscalar D0 and D± charm mesons.
Data are in arbitrary units and are the weighted averages bin-by-bin for the 3 D0 modes KPI, K3PI and KPIPI0.
Data are in arbitrary units and are the weighted averages bin-by-bin for the 3 modes KPI, K3PI and KPIPI0.
Results of fit to DSIG/DXL distribution of the form (1-XL)**POWER in the XL range 0.1 to 0.6.