Results of inclusive measurements of inelastic electron and positron scattering from unpolarized protons and deuterons at the HERMES experiment are presented. The structure functions $F_2^p$ and $F_2^d$ are determined using a parameterization of existing data for the longitudinal-to-transverse virtual-photon absorption cross-section ratio. The HERMES results provide data in the ranges $0.006\leq x\leq 0.9$ and 0.1 GeV$^2\leq Q^2\leq$ 20 GeV$^2$, covering the transition region between the perturbative and the non-perturbative regimes of QCD in a so-far largely unexplored kinematic region. They are in agreement with existing world data in the region of overlap. The measured cross sections are used, in combination with data from other experiments, to perform fits to the photon-nucleon cross section using the functional form of the ALLM model. The deuteron-to-proton cross-section ratio is also determined.
Results on the differential Born cross section $\frac{d^2\sigma^p}{dx\,dQ^2}$ and $F_2^p$. The statistical uncertainty $\delta_{stat.}$ and the systematic uncertainties $\delta_{PID}$ (particle identification), $\delta_{model}$ (model dependence outside the acceptance), $\delta_{mis.}$ (misalignment), and $\delta_{rad.}$ (Bethe-Heitler efficiencies) are given in percent. Corresponding $x$ bin numbers and $Q^2$ bin numbers and the average values $\langle x \rangle$ and $\langle {Q^2} \rangle$ are listed in the first four columns. The overall normalization uncertainty is 7.6 %. The structure function $F_2^p$ is derived using the parameterization $R=R_{1998}$.
Results on the differential Born cross section $\frac{d^2\sigma^d}{dx\,dQ^2}$ and $F_2^d$. The statistical uncertainty $\delta_{stat.}$ and the systematic uncertainties $\delta_{PID}$ (particle identification), $\delta_{model}$ (model dependence outside the acceptance), $\delta_{mis.}$ (misalignment), and $\delta_{rad.}$ (Bethe-Heitler efficiencies), are given in percent. Corresponding $x$ bin numbers and $Q^2$ bin numbers and the average values $\langle x \rangle$ and $\langle{Q^2}\rangle$ are listed in the first four columns. The overall normalization uncertainty is 7.5 %. The structure function $F_2^d$ is derived using the parameterization $R=R_{1998}$.
Results on the inelastic Born cross-section ratio ${\sigma^d}/{\sigma^p}$. The statistical uncertainty $\delta_{stat.}$, the systematic uncertainty $\delta_{rad.}$ due to radiative corrections and $\delta_{model}$ due to the model dependence outside the acceptance are given in percent. The average values of $x$ and $Q^2$ are listed in the first two columns. The overall normalization uncertainty is 1.4$\%$.
We study the processes e+e- --> K+ K- pi+pi-gamma, K+ K- pi0pi0gamma, and K+ K- K+ K-gamma, where the photon is radiated from the initial state. About 84000, 8000, and 4200 fully reconstructed events, respectively, are selected from 454 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the \epem center-of-mass energy, so that the K+ K- pi+pi- data can be compared with direct measurements of the e+e- --> K+ K- pi+pi- reaction. No direct measurements exist for the e+e- --> K+ K-pi0pi0 or e+e- --> K+ K-K+ K- reactions, and we present an update of our previous result with doubled statistics. Studying the structure of these events, we find contributions from a number of intermediate states, and extract their cross sections. In particular, we perform a more detailed study of the e+e- --> phi(1020)pipigamma reaction, and confirm the presence of the Y(2175) resonance in the phi(1020) f0(980) and K+K-f0(980) modes. In the charmonium region, we observe the J/psi in all three final states and in several intermediate states, as well as the psi(2S) in some modes, and measure the corresponding product of branching fraction and electron width.
The cross section for the reaction E+ E- --> K+ K- PI+ PI- measured with ISR data. Statistical errors only.
Cross section measurements for the reaction E+ E- --> K*(892)0 K- PI+. Statistical errors only.
Cross section measurements for the reaction E+ E- --> PHI PI+ PI-. Statistical errors only.
This letter reports a measurement of the muon charge asymmetry from W Boson produced in proton-proton collisions at a centre-of-mass energy of 7 TeV with the ATLAS experiment at the LHC. The asymmetry is measured in the W Boson to muon decay mode as a function of the muon pseudorapidity using a data sample corresponding to a total integrated luminosity of 31 pb-1. The results are compared to predictions based on next-to-leading order calculations with various parton distribution functions. This measurement provides information on the u and d quark momentum fractions in the proton.
The muon charge asymmetry from $W$-boson decays in bins of absolute pseudorapidity. Note that these numbers are taken from the journal version which differ slightly from those in the archive version 1.
Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Interaction cross sections and charged pion spectra in p+C interactions at 31 GeV/c were measured with the large acceptance NA61/SHINE spectrometer at the CERN SPS. These data are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. A set of data collected during the first NA61/SHINE run in 2007 with an isotropic graphite target with a thickness of 4% of a nuclear interaction length was used for the analysis. The measured p+C inelastic and production cross sections are 257.2 +- 1.9 +- 8.9 mb and 229.3 +- 1.9 +- 9.0 mb, respectively. Inclusive production cross sections for negatively and positively charged pions are presented as a function of laboratory momentum in 10 intervals of the laboratory polar angle covering the range from 0 up to 420 mrad. The spectra are compared with predictions of several hadron production models.
The total inelastic cross section and production cross sections. The latter are obtained from the former by subtraction of the quasi-elastic contribution.
The differential PI+ PI- production cross section in the lab. system for the angular range 0 to 20 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 20 to 40 mrad.
A measurement of the angular correlations between beauty and anti-beauty hadrons (B B-bar) produced in pp collisions at a centre-of-mass energy of 7 TeV at the CERN LHC is presented, probing for the first time the region of small angular separation. The B hadrons are identified by the presence of displaced secondary vertices from their decays. The B hadron angular separation is reconstructed from the decay vertices and the primary-interaction vertex. The differential B B-bar production cross section, measured from a data sample collected by CMS and corresponding to an integrated luminosity of 3.1 inverse picobarns, shows that a sizable fraction of the B B-bar pairs are produced with small opening angles. These studies provide a test of QCD and further insight into the dynamics of b b-bar production.
Cross section as a function of DELTA(R) for leading jet transverse momentum > 56 GeV. . The (sys) error in the table is due to the limited MC statistics and is uncorrelated bin-to-bin. The other two systematic errors are correlated.
Cross section as a function of DELTA(R) for leading jet transverse momentum > 84 GeV. . The (sys) error in the table is due to the limited MC statistics and is uncorrelated bin-to-bin. The other two systematic errors are correlated.
Cross section as a function of DELTA(R) for leading jet transverse momentum > 120 GeV. . The (sys) error in the table is due to the limited MC statistics and is uncorrelated bin-to-bin. The other two systematic errors are correlated. Note that these two systematic errors are different for the final point.
The spectra of strange hadrons are measured in proton-proton collisions, recorded by the CMS experiment at the CERN LHC, at centre-of-mass energies of 0.9 and 7 TeV. The K^0_s, Lambda, and Xi^- particles and their antiparticles are reconstructed from their decay topologies and the production rates are measured as functions of rapidity and transverse momentum. The results are compared to other experiments and to predictions of the PYTHIA Monte Carlo program. The transverse momentum distributions are found to differ substantially from the PYTHIA results and the production rates exceed the predictions by up to a factor of three.
The rapidity production spectra per NSD event spectra for KS mesons at 0.9 and 7 TeV.
The transverse momentum production spectra per NSD event spectra for KS mesons at 0.9 and 7 TeV.
The rapidity production spectra per NSD event spectra for LAMBDA mesons at 0.9 and 7 TeV.
Dijet angular distributions are measured over a wide range of dijet invariant masses in pp collisions at sqrt(s) = 7 TeV, at the CERN LHC. The event sample, recorded with the CMS detector, corresponds to an integrated luminosity of 36 inverse picobarns. The data are found to be in good agreement with the predictions of perturbative QCD, and yield no evidence of quark compositeness. With a modified frequentist approach, a lower limit on the contact interaction scale for left-handed quarks of Lambda = 5.6 TeV (6.7 TeV) for destructive (constructive) interference is obtained at the 95% confidence level.
Normalized dijet angular distribution for the dijet mass range > 2200 GeV.
Normalized dijet angular distribution for the dijet mass range 1800 to 2200 GeV.
Normalized dijet angular distribution for the dijet mass range 1400 to 1800 GeV.
A search for squarks and gluinos in final states containing jets, missing transverse momentum and no electrons or muons is presented. The data were recorded by the ATLAS experiment in sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 35 inverse picobarns of analysed data. Gluino masses below 500 GeV are excluded at the 95% confidence level in simplified models containing only squarks of the first two generations, a gluino octet and a massless neutralino. The exclusion increases to 870 GeV for equal mass squarks and gluinos. In MSUGRA/CMSSM models with tan(beta)= 3, A_0=0 and mu>0, squarks and gluinos of equal mass are excluded below 775 GeV. These are the most stringent limits to date.
The distribution in Meff (scalar sum of the missing transverse momentum and the transverse momenta of the two highest pT jets) for events with at least 2 jets after the application of all selection criteria (other than the Meff cut itself). The table shows the number of observed data points per 100 GeV bin plus the background prediction of the Standard-Model Monte-Carlo and its upper and lower 1-sigma error limits uncertainty band.
The distribution in Meff (scalar sum of the missing transverse momentum and the transverse momenta of the three highest pT jets) for events with at least 3 jets after the application of all selection criteria (other than the Meff cut itself). The table shows the number of observed data points per 100 GeV bin plus the background prediction of the Standard-Model Monte-Carlo and its upper and lower 1-sigma uncertainty band error limits.
The distribution in MT2 for events with at least 2 jets after the application of all selection criteria (other than the MT2 cut itself). The table shows the number of observed data points per 40 GeV bin plus the background prediction of the Standard-Model Monte-Carlo and its upper and lower 1-sigma uncertainty band error limits.
Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets. We present a measurement of the normalized differential cross section based on the full dataset (L=36/pb) acquired by the ATLAS detector during the 2010 sqrt(s)=7 TeV proton-proton run of the LHC. The measured distributions include jets with transverse momenta up to 1.3 TeV, probing perturbative QCD in a high energy regime.
Distribution for the maxPT jet (P=3) from 110 to 160 GeV.
Distribution for the maxPT jet (P=3) from 160 to 210 GeV.
Distribution for the maxPT jet (P=3) from 210 to 260 GeV.