t anti-t production cross-section in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abdesselam, A. ; et al.
Phys.Rev.D 67 (2003) 012004, 2003.
Inspire Record 586609 DOI 10.17182/hepdata.54899

Results are presented on a measurement of the ttbar pair production cross section in ppbar collisions at sqrt{s} = 1.8 TeV from nine independent decay channels. The data were collected by the Dzero experiment during the 1992-1996 run of the Fermilab Tevatron Collider. A total of 80 candidate events are observed with an expected background of 38.8 +- 3.3 events. For a top quark mass of 172.1 GeV/c^2, the measured cross section is 5.69 +- 1.21 (stat) +- 1.04 (sys) pb.

1 data table

Measured top quark pair production cross section in the different channels and the various averages, including the overall average.


b anti-b quark pair correlations in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amidei, Dante E. ; et al.
FERMILAB-PUB-94-131-E, 1994.
Inspire Record 380743 DOI 10.17182/hepdata.42477

None

1 data table

No description provided.


Z gamma production in anti-p p collisions S**(1/2) = 1.8-TeV and limits on anomalous Z Z gamma and Z gamma gamma couplings

The D0 collaboration Abbott, B. ; Abolins, M. ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 57 (1998) R3817-R3821, 1998.
Inspire Record 465977 DOI 10.17182/hepdata.42169

We present a study of Z +gamma + X production in p-bar p collisions at sqrt{S}=1.8 TeV from 97 (87) pb^{-1} of data collected in the eegamma (mumugamma) decay channel with the D0 detector at Fermilab. The event yield and kinematic characteristics are consistent with the Standard Model predictions. We obtain limits on anomalous ZZgamma and Zgammagamma couplings for form factor scales Lambda = 500 GeV and Lambda = 750 GeV. Combining this analysis with our previous results yields 95% CL limits |h{Z}_{30}| < 0.36, |h{Z}_{40}| < 0.05, |h{gamma}_{30}| < 0.37, and |h{gamma}_{40}| < 0.05 for a form factor scale Lambda=750 GeV.

1 data table

CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: h = hi0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n. See article for details.


Z gamma production and limits on anomalous Z Z gamma and Z gamma gamma couplings in panti-p collisions at s**(1/2) = 1.96- TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 653 (2007) 378-386, 2007.
Inspire Record 750351 DOI 10.17182/hepdata.52512

We present a study of eegamma and mumugamma events using over 1 fb-1 of data collected with the D0 detector at the Fermilab Tevatron ppbar Collider at sqrt(s) = 1.96 TeV. Having observed 453 (515) candidates in the eegamma (mumugamma) final state, we measure the Zgamma production cross section for a photon with transverse energy ET > 7 GeV, separation between the photon and leptons Delta R(lgamma} > 0.7, and invariant mass of the di-lepton pair M(ll) > 30 GeV, to be 4.96 +/- 0.30(stat. + syst.) +/- 0.30(lumi.) pb, in agreement with the standard model prediction of 4.74 +/- 0.22 pb. This is the most precise Zgamma cross section measurement at a hadron collider. We set limits on anomalous trilinear Zgammagamma and ZZgamma gauge boson couplings of -0.085 < h(30)^(gamma) < 0.084, -0.0053 < h(40)^(gamma) < 0.0054 and -0.083 < h(30)^(Z) < 0.082, -0.0053 < h(40)^(Z) < 0.0054 at the 95% C.L. for the form-factor scale Lambda = 1.2 TeV.

1 data table

Measured cross section for Z0 GAMMA production. Error contains both statistics and systematics (excluding luminosity uncertainty).


W boson + jet angular distribution in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 73 (1994) 2296-2300, 1994.
Inspire Record 374152 DOI 10.17182/hepdata.42492

The W+jet angular distribution is measured using W→eν events recorded with the Collider Detector at Fermilab (CDF) during the 1988-89 and 1992-93 Tevatron runs. The data agree well with both a leading order and a next-to-leading order theoretical prediction. The shape of the angular distribution is similar to that observed in photon + jet data and significantly different from that observed in dijet data.

2 data tables

Data normalized to 1 in the cos(theta) range -0.6 to 0.6.

Data normalized to 1 in the abs(cos(theta)) range <0.3.


W and Z boson production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 1456-1461, 1995.
Inspire Record 395459 DOI 10.17182/hepdata.42368

The inclusive cross sections times leptonic branching ratios for W and Z boson production in PbarP collisions at Sqrt(s)=1.8 TeV were measured using the D0 detector at the Fermilab Tevatron collider: Sigma_W*B(W->e, nu) = 2.36 +/- 0.07 +/- 0.13 nb, Sigma_W*B(W->mu,nu) = 2.09 +/- 0.23 +/- 0.11 nb, Sigma_Z*B(Z-> e, e) = 0.218 +/- 0.011 +/- 0.012 nb, Sigma_Z*B(Z->mu,mu) = 0.178 +/- 0.030 +/- 0.009 nb. The first error is the combined statistical and systematic uncertainty, and the second reflects the uncertainty in the luminosity. For the combined electron and muon analyses we find: [Sigma_W*B(W->l,nu)]/[Sigma_Z*B(Z->l,l)] = 10.90 +/- 0.49. Assuming Standard Model couplings, this result is used to determine the width of the W boson: Gamma(W) = 2.044 +/- 0.093 GeV.

1 data table

The second DSYS error is due to luminosity.


Using Z boson events to study parton-medium interactions in PbPb collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 128 (2022) 122301, 2022.
Inspire Record 1850859 DOI 10.17182/hepdata.95230

The spectra measurements of charged hadrons produced in the shower of a parton originating in the same hard scattering with a leptonically decaying Z boson, are reported in lead-lead (PbPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. Both PbPb and pp data sets are recorded by the CMS experiment at the LHC, and correspond to an integrated luminosity of 1.7 nb$^{-1}$ and 320 pb$^{-1}$, respectively. Hadronic collision data with one reconstructed Z boson candidate with the transverse momentum $p_\mathrm{T}$$\gt$ 30 GeV/$c$ are analyzed. The Z boson constrains the initial energy and direction of the associated parton. In heavy ion events, azimuthal angular distributions of charged hadrons with respect to the direction of a Z boson are sensitive to modifications of the in-medium parton shower and medium response. Compared to reference data from pp interactions, the results for central PbPb collisions indicate a modification of the angular correlations. The measurements of the fragmentation functions and $p_\mathrm{T}$ spectra of charged particles in Z boson events, which are sensitive to medium modifications of the parton shower longitudinal structure, are also reported. Significant modifications in central PbPb events compared to pp reference data are also found for these observables.

28 data tables

Distributions of $\Delta\phi_{\mathrm{trk,Z}}$ in pp collisions at 5.02 TeV.

Distributions of $\Delta\phi_{\mathrm{trk,Z}}$ in 70-90% centrality PbPb collisions at 5.02 TeV.

Distributions of $\Delta\phi_{\mathrm{trk,Z}}$ in 50-70% centrality PbPb collisions at 5.02 TeV.

More…

Upsilon production in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.Lett. 75 (1995) 4358, 1995.
Inspire Record 398187 DOI 10.17182/hepdata.42349

We report on measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential, (d2σdPtdy)y=0, and integrated cross sections in pp¯ collisions at s=1.8 TeV using a sample of 16.6 ± 0.6 pb−1 collected by the Collider Detector at Fermilab. The three resonances were reconstructed through the decay ϒ→μ+μ−. Comparison is made to a leading order QCD prediction.

7 data tables

SIG*Br(UPSI --> MU+ MU-).

SIG*Br(UPSI --> MU+ MU-).

SIG*Br(UPSI --> MU+ MU-).

More…

Upsilon production and polarization in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.Lett. 88 (2002) 161802, 2002.
Inspire Record 569269 DOI 10.17182/hepdata.42894

We report on measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential cross sections (d2σ/dpTdy)|y|<0.4, as well as on the ϒ(1S) polarization in pp¯ collisions at s=1.8TeV using a sample of 77±3pb−1 collected by the collider detector at Fermilab. The three resonances were reconstructed through the decay ϒ→μ+μ−. The measured angular distribution of the muons in the ϒ(1S) rest frame is consistent with unpolarized meson production.

4 data tables

The differential cross section times the branching ratio into mu+ mu- for UPSILON(1S) production.

The differential cross section times the branching ratio into mu+ mu- for UPSILON(2S) production. The first DSYS error is the systematic error due to the polarization of the UPSILON which is shown seperately from the other systematic errors.

The differential cross section times the branching ratio into mu+ mu- for UPSILON(3S) production. The first DSYS error is the systematic error due to the polarization of the UPSILON which is shown seperately from the other systematic errors.

More…

Underlying-event properties in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
JHEP 06 (2023) 023, 2023.
Inspire Record 2071174 DOI 10.17182/hepdata.133032

We report about the properties of the underlying event measured with ALICE at the LHC in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The event activity, quantified by charged-particle number and summed-$p_{\rm T}$ densities, is measured as a function of the leading-particle transverse momentum ($p_{\rm T}^{\rm trig}$). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different $p_{\rm T}$ thresholds (0.15, 0.5, and 1 GeV/$c$) at mid-pseudorapidity ($|\eta|<0.8$). The event activity in the transverse region, which is the most sensitive to the underlying event, exhibits similar behaviour in both pp and p$-$Pb collisions, namely, a steep increase with $p_{\rm T}^{\rm trig}$ for low $p_{\rm T}^{\rm trig}$, followed by a saturation at $p_{\rm T}^{\rm trig} \approx 5$ GeV/$c$. The results from pp collisions are compared with existing measurements at other centre-of-mass energies. The quantities in the toward and away regions are also analyzed after the subtraction of the contribution measured in the transverse region. The remaining jet-like particle densities are consistent in pp and p$-$Pb collisions for $p_{\rm T}^{\rm trig}>10$ GeV/$c$, whereas for lower $p_{\rm T}^{\rm trig}$ values the event activity is slightly higher in p$-$Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators.

10 data tables

Fig. 4: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

Fig. 5: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

Fig. 6a: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Away and Toward regions after the subtraction of Number density $N_{\rm ch}$ and $\Sigma p_{\rm T}$ distributions in the transverse region for pp collisions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

More…