A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60
Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.
Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0
Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.
Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.
Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.
None
Axis error includes +- 20/20 contribution.
Axis error includes +- 20/20 contribution.
Axis error includes +- 20/20 contribution.
Using the KEDR detector at the VEPP-4M $e^+e^-$ collider, we have measured the values of $R_{\text{uds}}$ and $R$ at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than $3.3\%$ at most of energy points with a systematic uncertainty of about $2.1\%$. At the moment it is the most accurate measurement of $R(s)$ in this energy range.
Measured values of $R_{\rm{uds}}(s)$ and $R(s)$ with statistical and systematic uncertainties.
None
No description provided.
None
'1'. '2'. '3'.
No description provided.
The relative and absolute cross sections are measured for different channels of strange- particle production by 2.8-BeV/c 1r- mesons on xenon nuclei. The angular and momentum distributions of strange particles in the laboratory system and in the pion-nucleon center- of-mass system are presented.
No description provided.
ω photoproduction off hydrogen and deuterium has been studied with the tagged photon beam of the ELSA accelerator in Bonn for photon energies up to 2.0 GeV. The ω meson has been identified via the ω → π$^{0}$ γ → γγγ decay mode, using the combined setup of the Crystal Barrel/TAPS detector systems. Both inclusive and exclusive analyses have been carried out. Differential and total cross-sections have been derived for ω mesons produced off free protons and off protons and neutrons bound in deuterium. The cross-section for the production off the bound neutron is found to be a factor of ≈ 1.3 larger than the one off the bound proton in the incident beam energy region 1.2 GeV < E$_{γ}$ < 1.6 GeV. For higher incident beam energies this factor goes down to ≈ 1.1 at 2.0 GeV. The cross-sections of this work have been used as normalization for transparency ratio measurements.
Differential cross-sections of $\omega$ mesons produced off the free proton versus $\cos(\theta^\omega_{\mathrm{c.m.}})$ and versus the momentum transfer to the nucleon, $t$, for incident photon energy $E_\gamma$ = 1.125-1.150 GeV.
Differential cross-sections of $\omega$ mesons produced off the free proton versus $\cos(\theta^\omega_{\mathrm{c.m.}})$ and versus the momentum transfer to the nucleon, $t$, for incident photon energy $E_\gamma$ = 1.150-1.175 GeV.
Differential cross-sections of $\omega$ mesons produced off the free proton versus $\cos(\theta^\omega_{\mathrm{c.m.}})$ and versus the momentum transfer to the nucleon, $t$, for incident photon energy $E_\gamma$ = 1.175-1.200 GeV.
We present the midrapidity charged pion invariant cross sections and the ratio of $\pi^-$-to-$\pi^+$ production ($5
Invariant cross section for $\pi^+$ and $\pi^-$ hadrons, as well as the statistical and systematic uncertainties. In addition, there is an absolute scale uncertainty of 9.6$\%$.
Double-helicity asymmetries and statistical uncertainties for $\pi^+$ and $\pi^-$ hadrons. The primary systematic uncertainties, which are fully correlated between points, are $1.4\times10^{-3}$ from relative luminosity and a $^{+7.0\%}_{-7.7\%}$ scaling uncertainty from beam polarization.
Ratio of charged pion cross section, as shown in Fig.6.
The first observation of $Z$ boson production in proton-lead collisions at a centre-of-mass energy per proton-nucleon pair of $\sqrt{s_{NN}}=5~\text{TeV}$ is presented. The data sample corresponds to an integrated luminosity of $1.6~\text{nb}^{-1}$ collected with the LHCb detector. The $Z$ candidates are reconstructed from pairs of oppositely charged muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above $20~\text{GeV}/c$. The invariant dimuon mass is restricted to the range $60-120~\text{GeV}/c^2$. The $Z$ production cross-section is measured to be \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{fwd})&=&13.5^{+5.4}_{-4.0}\text{(stat.)}\pm1.2\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the proton beam and \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{bwd}) & =&10.7^{+8.4}_{-5.1}\text{(stat.)}\pm1.0\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the lead beam, where the first uncertainty is statistical and the second systematic.
The measured Z production cross-sections in proton-lead collisions, measured in the fiducial region defined in the table, in the forward and backward directions. The statistical uncertainty is defined as the 68% confidence interval with symmetric coverage assuming that the number of candidates follows a Poisson distribution.
The forward-backward ratio measured in the overlap region 2.5 < ABS(YRAP) < 4.0. The first uncertainty is statistical, defined as the 68% confidence interval with symmetric coverage. The second uncertainty is systematic and includes the uncertainty on the acceptance correction factor, BETA, for the difference in the detector acceptance of the muons between the forward and backward directions.