We report differential cross sections for the production of D*(2010) produced in 500 GeV/c pi^- nucleon interactions from experiment E791 at Fermilab, as functions of Feynman-x (x_F) and transverse momentum squared (p_T^2). We also report the D* +/- charge asymmetry and spin-density matrix elements as functions of these variables. Investigation of the spin-density matrix elements shows no evidence of polarization. The average values of the spin alignment are \eta= 0.01 +- 0.02 and -0.01 +- 0.02 for leading and non-leading particles, respectively.
Acceptance corrected differential cross sections for D*+- production as a function of XL, Feynman X.
Acceptance corected differential cross sections for D*+- production as a function of PT**2.
Charge production asymmetry as a function of Feynman X.
Global properties of the hadronic final state in deep inelastic scattering events at HERA are investigated. The data are corrected for detector effects and are compared directly with QCD phenomenology. Energy flows in both the laboratory frame and the hadronic centre of mass system and energy-energy correlations in the laboratory frame are presented. Comparing various QCD models, the colour dipole model provides the only satisfactory description of the data. In the hadronic centre of mass system the momentum components of charged particles longitudinal and transverse to the virtual boson direction are measured and compared with lower energy lepton-nucleon scattering data as well as withe+e− dat from LEP.
Overall systematic error of 6 pct not included.
Corrected transverse energy-energy correlation TEEC as a function of omega (see text of paper for definition of omega - which effectively defines the distance between hadrons in the pseudorapidity and azimuthal angle). Overall systematic error of 12 pct is not included.
Charged particle spectra as a function of the Feynman x variable for different ranges of the hadronic mass W.
A comparison is made between the properties of the final state hadrons produced in 280 GeV μp interactions and ine+e− annihilation. The Lund model of hadroproduction is used as an aid in understanding the differences observed. The hadron distributions from μp ande+e− interactions are consistent with the quark parton model assumption of environmental independence, provided that the differences in heavy quark production and hard QCD effects in the two processes are taken into account. A comparison with aK+p experiment is also made. Values are also determined for the Lund model parameters σq = 0.410 ± 0.002 ± 0.020 GeV and σ′ = 0.29−0.15 −0.13+0.09+0.10 GeV, controlling the transverse momenta in fragmentation and intrinsic transverse momenta of the struck quark respectively.
With respect to the virtual photon axis.
With respect to the sphericity axis.
With respect to the thrust axis.
None
No description provided.
No description provided.
No description provided.