Version 2
Precision measurement of forward $Z$ boson production in proton-proton collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Abellán Beteta, C. ; et al.
JHEP 07 (2022) 026, 2022.
Inspire Record 1990313 DOI 10.17182/hepdata.132011

A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.

27 data tables

Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.

Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

More…

Light vector meson production in pp collisions at sqrt(s) = 7 TeV

The ALICE collaboration Abelev, B. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Lett.B 710 (2012) 557-568, 2012.
Inspire Record 1080945 DOI 10.17182/hepdata.58629

The ALICE experiment has measured low-mass dimuon production in pp collisions at $\sqrt{s} = 7$ TeV in the dimuon rapidity region 2.5<y<4. The observed dimuon mass spectrum is described as a superposition of resonance decays ($\eta$, $\rho$, $\omega$, $\eta^{'}$, $\phi$) into muons and semi-leptonic decays of charmed mesons. The measured production cross sections for $\omega$ and $\phi$ are $\sigma_\omega$ (1<$p_{\rm T}$<5 GeV/$c$,2.5<y<4) = 5.28 $\pm$ 0.54 (stat) $\pm$ 0.50 (syst) mb and $\sigma_\phi$(1<$p_{\rm T}$<5 GeV/$c$,2.5<y<4)=0.940 $\pm$ 0.084 (stat) $\pm$ 0.078 (syst) mb. The differential cross sections $d^2\sigma/dy dp_{\rm T}$ are extracted as a function of $p_{\rm T}$ for $\omega$ and $\phi$. The ratio between the $\rho$ and $\omega$ cross section is obtained. Results for the $\phi$ are compared with other measurements at the same energy and with predictions by models.

5 data tables

Differential phi cross section from the di-muon channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one.

Differential omega cross section from the di-muon channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one.

Total phi cross section from the di-muon data. The first error is statistical, the second is a systematic error.

More…

Rapidity and transverse momentum dependence of inclusive J/psi production in pp collisions at sqrt(s) = 7 TeV

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Lett.B 704 (2011) 442-455, 2011.
Inspire Record 897764 DOI 10.17182/hepdata.57452

The ALICE experiment at the LHC has studied inclusive J/$\psi$ production at central and forward rapidities in pp collisions at $\sqrt{s} = 7$ TeV. In this Letter, we report on the first results obtained detecting the J/$\psi$ through its dilepton decay into $e^+e^-$ and $\mu^+\mu^-$ pairs in the rapidity range |y|<0.9 and 2.5<y<4, respectively, and with acceptance down to zero $p_{\rm T}$. In the dielectron channel the analysis was carried out on a data sample corresponding to an integrated luminosity $L_{\rm int}$ = 5.6 nb$^{-1}$ and the number of signal events is $N_{J/\psi}=352 \pm 32$ (stat.) $\pm$ 28 (syst.); the corresponding figures in the dimuon channel are $L_{\rm int}$ = 15.6 nb$^{-1}$ and $N_{J/\psi} = 1924 \pm 77$ (stat.) $\pm$ 144(syst.). The measured production cross sections are $\sigma_{J/\psi}$ (|y|<0.9) = 12.4 $\pm$ 1.1 (stat.) $\pm$ 1.8 (syst.) + 1.8 -2.7 (syst.pol.) $\mu$b and $\sigma_{J/\psi}$ (2.5<y<4) = 6.31 $\pm$ 0.25 (stat.) $\pm$ 0.76 (syst.) +0.95 -1.96 (syst.pol.) $\mu$b. The differential cross sections, in transverse momentum and rapidity, of the J/$\psi$ were also measured.

5 data tables

Double differential J/PSI cross section from the di-electron channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one. The last four columns are the errors considering. a +1 polarization in the Collins-Soper frame, a -1 polarization in the Collins-Soper frame, a +1 polarization in the Helicity frame and a -1 polarization in the Helicity frame, respectively.

Differential J/PSI cross section from the di-muon channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one. The last four columns are the errors (in MUB/GEV) considering a +1 polarization in the Collins-Soper frame, a -1 polarization in the Collins-Soper frame, a +1 polarization in the Helicity frame and a -1 polarization in the Helicity frame, respectively.

Differential J/PSI cross section from the di-electron and di-muon channel as a function of rapidity, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one. The last four columns are the errors (in MUB/GEV) considering. Data in the first point of this table updated from the erratum.

More…

Dependence of the $t\bar{t}$ production cross section on the transverse momentum of the top quark

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 693 (2010) 515-521, 2010.
Inspire Record 842641 DOI 10.17182/hepdata.54975

We present a measurement of the differential cross section for $t\bar{t}$ events produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV as a function of the transverse momentum ($p_T$) of the top quark. The selected events contain a high-$p_T$ lepton ($\ell$), four or more jets, and a large imbalance in $p_T$, and correspond to 1 fb${}^{-1}$ of integrated luminosity recorded with the D0 detector. Each event must have at least one candidate for a $b$ jet. Objects in the event are associated through a constrained kinematic fit to the $t\bar{t}\to WbW\bar{b} \to \ell\nu b q\bar{q}'\bar{b}$ process. Results from next-to-leading-order perturbative QCD calculations agree with the measured differential cross section. Comparisons are also provided to predictions from Monte Carlo event generators using QCD calculations at different levels of precision.

2 data tables

Total cross section for TOP TOPBAR production integrating over PT.

The inclusive PT spectra for TOP TOPBAR production.


Cold Nuclear Matter Effects on J/Psi as Constrained by Deuteron-Gold Measurements at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 77 (2008) 024912, 2008.
Inspire Record 768530 DOI 10.17182/hepdata.57373

All of the experimental data points presented in the original paper are correct and unchanged (including statistical and systematic uncertainties). However, herein we correct a comparison between the experimental data and a theoretical picture, because we discovered a mistake in the code used. All of the most probable sigma_breakup values differ by less than 0.4 mb from those originally presented. However, the one standard deviation uncertainties (that include contributions from both the statistical and systematic uncertainties on the experimental data points) are approximately 30-60% larger than originally reported. We give a table of the new comparison results and corrected versions of Figs. 8-11 of the original paper and we note that no correction is needed for results from the data-driven method in Fig. 13.

22 data tables

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus rapidity in D+AU collisions, over 3 bins of rapidity.

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus rapidity in D+AU collisions, over 5 bins of rapidity.

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus PT at backward rapidity (-2.2<y<-1.2) in D+AU collisions.

More…

J / psi production versus transverse momentum and rapidity in p+p collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 232002, 2007.
Inspire Record 731611 DOI 10.17182/hepdata.57311

J/Psi production in p+p collisions at sqrt(s) = 200 GeV has been Measured in the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over a rapidity range of -2.2 < y < 2.2 and a transverse momentum range of 0 < pT < 9 GeV/c. The statistics available allow a detailed measurement of both the pT and rapidity distributions and are sufficient to constrain production models. The total cross section times branching ratio determined for J/Psi production is B_{ll} sigma_pp^J/psi = 178 +/- 3(stat) +/- 53(syst) +/- 18(norm) nb.

6 data tables

J/PSI differential cross section, times dilepton branching ratio, versus transverse momentum PT, at mid rapidity : -0.35<y<0.35.

J/PSI differential cross section, times dilepton branching ratio, versus transverse momentum PT, at forward rapidities : absolute value of y belongs to [1.2;2.2].

Mean PT^2 value at mid rapidities : -0.35<y<0.35 The mean PT is obtained with a phenomonological fit of the J/PSI distribution in PT of the form (1/(2*PI*PT))*D(SIG)/DPT = A ( 1+(PT/B)^2)^-6 .The systematic error includes the incertainty from the maximum shape deviation permitted by the point-to-point correlated errors and from allowing the exponent of the fit fonctionto be a free parameter.

More…

Centrality dependence of charm production from single electrons measurement in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 082301, 2005.
Inspire Record 660611 DOI 10.17182/hepdata.57254

The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 4.0 GeV/c) of single electrons as a function of centrality in Au+Au collisions at sqrt(s_NN) = 200 GeV. Contributions to the raw spectra from photon conversions and Dalitz decays of light neutral mesons are measured by introducing a thin (1.7% X_0) converter into the PHENIX acceptance and are statistically removed. The subtracted ``non-photonic'' electron spectra are primarily due to the semi-leptonic decays of hadrons containing heavy quarks (charm and bottom). For all centralities, charm production is found to scale with the nuclear overlap function, T_AA. For minimum-bias collisions the charm cross section per binary collision is N_cc^bar/T_AA = 622 +/- 57 (stat.) +/- 160 (sys.) microbarns.

18 data tables

Value of the Alpha power as used in a fit of dN/dy versus Ncoll of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value only includes data from Au+Au collisions The value of Alpha = 1 is the expectation in the absence of medium effects.

Value of the Alpha power as used in a fit of dN/dy versus Ncoll, of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value is calculated including previous data of p+p collisions, measured by PHENIX, in addition of the Au+Au data The value of Alpha = 1 is the expectation in the absence of medium effects.

Spectrum in transverse momentum of electrons created in open heavy flavor decays, for minimum bias events.

More…

Open charm yields in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 94 (2005) 062301, 2005.
Inspire Record 653868 DOI 10.17182/hepdata.43117

Mid-rapidity open charm spectra from direct reconstruction of $D^{0}$($\bar{D^0}$)$\to K^{\mp}\pi^{\pm}$ in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at \srt = 200 GeV are reported. The $D^{0}$($\bar{D^0}$) spectrum covers a transverse momentum ($p_T$) range of 0.1 $<p_T<$ 3 \GeVc whereas the electron spectra cover a range of 1 $<p_T<$ 4 GeV/$c$. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at mid-rapidity for open charm production from d+Au collisions at RHIC is $d\sigma^{NN}_{c\bar{c}}/dy$=0.30$\pm$0.04 (stat.)$\pm$0.09(syst.) mb. The results are compared to theoretical calculations. Implications for charmoniumm results in A+A collisions are discussed.

8 data tables

Inclusive electrons yield versus transverse momentum in D+AU collisions Data points at PT = 2.2, 2.7 and 3.5 GeV/c was obtained using only the TPC (Time Projection Chamber) and cover a pseudo-rapidity range of -1<eta<1, while other points were obtained using both a prototypeTime-of-Flight System and the TPC and cover a pseudo-rapidity range of -1<eta<0.

Inclusive electrons yield versus transverse momentum in P+P collisions.

D0 yield versus transverse momentum in D+AU collisions.

More…

J / psi production from proton proton collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 92 (2004) 051802, 2004.
Inspire Record 623000 DOI 10.17182/hepdata.57093

J/psi production has been measured in proton-proton collisions at sqrt(s)= 200 GeV over a wide rapidity and transverse momentum range by the PHENIX experiment at RHIC. Distributions of the rapidity and transverse momentum, along with measurements of the mean transverse momentum and total production cross section are presented and compared to available theoretical calculations. The total J/psi cross section is 3.99 +/- 0.61(stat) +/- 0.58(sys) +/- 0.40(abs) micro barns. The mean transverse momentum is 1.80 +/- 0.23(stat) +/- 0.16(sys) GeV/c.

5 data tables

Measured J/PSI distribution in PT for the e+e- channel. The value of B, the branching fraction to either electrons or muons is the average value from PDG : 5.9%.The rapidity range is -0.35<y<0.35. Incertainties are 1-sigma statistical errors on the (signal - background) net yield. There is a 10% overall absolute cross section normalization error in addition to the error given.

Measured J/PSI distribution in PT for the mu+mu- channel. The value of B, the branching fraction to either electrons or muons, is the average value from PDG: 5.9%.The rapidity range is -2.2<y<-1.2. Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.

J/PSI distribution in rapidity. The data at rapidity = 0 is from the electron arm, the data from the muon arm, corresponding to forward rapidity is divided in two bins.The value of B,the branching fraction to either electrons or muons, is 5.9%, the average value from PDG.Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.

More…

Total forward and differential cross sections of neutral D mesons produced in 500-GeV/c pi- nucleon interactions.

The E791 collaboration Aitala, E.M ; Amato, S ; Anjos, J.C ; et al.
Phys.Lett.B 462 (1999) 225-236, 1999.
Inspire Record 502166 DOI 10.17182/hepdata.42103

We measure the neutral D total forward cross section and the differential cross sections as function of Feynman-x ($x_F$) and transverse momentum squared for 500 GeV/c $\pi^-$-nucleon interactions. The results are obtained from 88990+-460 reconstructed neutral D mesons from Fermilab experiment E791 using the decay channels $D\to K^-\pi^+$ and $D\to K^-\pi^+\pi^-\pi^+$ (and charge conjugates). We extract fit parameters from the differential cross sections and provide the first direct measurement of the turnover point in the $x_F$ distribution, 0.0131+-0.0038. We measure an absolute $D^0 + \bar{D^0}$ ($x_F > 0$) cross section of 15.4+1.8-2.3 microbarns/nucleon (assuming a linear A dependence). The differential and total forward cross sections are compared to theoretical predictions and to results of previous experiments.

3 data tables

The neutral D total forward cross section summed over all XL (the 0.8 TO 1.0 XL bin is assumed to be half of the 0.6 TO 0.8 but with the same error).

The Feynman X differential cross section integrated over all PT**2.

The PT differential cross section integrated over the full forward XL direction.