We report measurements of the primary charged particle pseudorapidity density and transverse momentum distributions in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV, and investigate their correlation with experimental observables sensitive to the centrality of the collision. Centrality classes are defined using different event activity estimators, i.e. charged particle multiplicities measured in three disjunct pseudorapidity regions as well as the energy measured at beam rapidity (zero-degree). The procedures to determine the centrality, quantified by the number of participants ($N_{\rm part}$), or the number of nucleon-nucleon binary collisions ($N_{\rm coll}$), are described. We show that, in contrast to Pb-Pb collisions, in p-Pb collisions large multiplicity fluctuations together with the small range of participants available, generate a dynamical bias in centrality classes based on particle multiplicity. We propose to use the zero-degree energy, which we expect not to introduce a dynamical bias, as an alternative event-centrality estimator. Based on zero-degree energy centrality classes, the $N_{\rm part}$ dependence of particle production is studied. Under the assumption that the multiplicity measured in the Pb-going rapidity region scales with the number of Pb-participants, an approximate independence of the multiplicity per participating nucleon measured at mid-rapitity of the number of participating nucleons is observed. Furthermore, at high-$p_{\rm T}$ the p-Pb spectra are found to be consistent with the pp spectra scaled by $N_{\rm coll}$ for all centrality classes. Our results represent valuable input for the study of the event activity dependence of hard probes in p-Pb collision and, hence, help to establish baselines for the interpretation of the Pb-Pb data.
dNdeta CL1.
dNdeta V0M.
dNdeta V0A.
Invariant yields of neutral pions at midrapidity in the transverse momentum range $0.6 < p_{T} < 12 GeV/c$ measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV are presented for six centrality classes. The pp reference spectrum was measured in the range $0.4 < p_{T} < 10 GeV/c$ at the same center-of-mass energy. The nuclear modification factor, $R_{\rm AA}$, shows a suppression of neutral pions in central Pb-Pb collisions by a factor of up to about $8-10$ for $5 \lesssim p_{T} \lesssim 7 GeV/c$. The presented measurements are compared with results at lower center-of-mass energies and with theoretical calculations.
Invariant differential yields of PI0 produced in inelastic pp collisions at center-of-mass energy 2.76 TeV.
Invariant differential cross section of PI0 produced in inelastic pp collisions at center-of-mass energy 2.76 TeV, the uncertainty of \sigma_{inel} of 3.9% is not included in the systematic error.
Invariant differential yields of PI0 produced in 0-5% central inelastic PbPb collisions at center-of-mass energy per nucleon 2.76 TeV.
The nuclear modification factor, $R_{\rm AA}$, of the prompt charmed mesons ${\rm D^0}$, ${\rm D^+}$ and ${\rm D^{*+}}$, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass energy $\sqrt{s_{\rm NN}} = 2.76$ TeV in two transverse momentum intervals, $5<p_{\rm T}<8$ GeV/$c$ and $8<p_{\rm T}<16$ GeV/$c$, and in six collision centrality classes. The $R_{\rm AA}$ shows a maximum suppression of a factor of 5-6 in the 10% most central collisions. The suppression and its centrality dependence are compatible within uncertainties with those of charged pions. A comparison with the $R_{\rm AA}$ of non-prompt ${\rm J}/\psi$ from B meson decays, measured by the CMS Collaboration, hints at a larger suppression of D mesons in the most central collisions.
${\rm D^+}$ meson $R_{\rm AA}$ in $5 < p_{\rm T} < 8$ GeV/c.
${\rm D^+}$ meson $R_{\rm AA}$ in $8 < p_{\rm T} < 16$ GeV/c.
${\rm D^{*+}}$ meson $R_{\rm AA}$ in $5 < p_{\rm T} < 8$ GeV/c.
The transverse momentum ($p_{\mathrm T}$) distribution of primary charged particles is measured in minimum bias (non-single-diffractive) p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV with the ALICE detector at the LHC. The $p_{\mathrm T}$ spectra measured near central rapidity in the range $0.5<p_{\mathrm T}<20$ GeV/$c$ exhibit a weak pseudorapidity dependence. The nuclear modification factor $R_{\mathrm{pPb}}$ is consistent with unity for $p_{\mathrm T}$ above 2 GeV/$c$. This measurement indicates that the strong suppression of hadron production at high $p_{\mathrm T}$ observed in Pb-Pb collisions at the LHC is not due to an initial-state effect. The measurement is compared to theoretical calculations.
Normalized differential primary charged particle yield.
pp INEL cross section scaled by nuclear overlap.
Nuclear Modification Factor R_pPb in the central region.
Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb and Pb-Pb collisions are presented. They help address the question of whether there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a $|\Delta \eta|$ gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of $v_{2}\{4\}$ to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find $v_{2}\{4\} \simeq v_{2}\{6\}\neq 0$ which is indicative of a Bessel-Gaussian function for the $v_{2}$ distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a $|\Delta\eta| > 1.4$ gap is placed.
No description provided.
No description provided.
No description provided.
In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p-Pb and Pb-Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p-Pb collisions are found to be 5-15% larger than those in pp, while those in Pb-Pb are 35-55% larger than those in p-Pb. Our measurements disfavor models which incorporate substantially stronger collective expansion in p-Pb as compared to pp collisions at similar multiplicity.
Mixed charge C3 and c3 in pp collisions projected against 1 of a mixed-charge pair invariant relative momentum.
Same charge C3 and c3 in pp collisions projected against Q3.
Same charge C3 and c3 in p Pb collisions projected against Q3.
Inclusive J/$\psi$ production has been studied with the ALICE detector in p-Pb collisions at the nucleon-nucleon center of mass energy $\sqrt{s_{\rm NN}}$ = 5.02 TeV at the CERN LHC. The measurement is performed in the center of mass rapidity domains $2.03<y_{\rm cms}<3.53$ and $-4.46<y_{\rm cms}<-2.96$, down to zero transverse momentum, studying the $\mu^+\mu^-$ decay mode. In this paper, the J/$\psi$ production cross section and the nuclear modification factor $R_{\rm pPb}$ for the rapidities under study are presented. While at forward rapidity, corresponding to the proton direction, a suppression of the J/$\psi$ yield with respect to binary-scaled pp collisions is observed, in the backward region no suppression is present. The ratio of the forward and backward yields is also measured differentially in rapidity and transverse momentum. Theoretical predictions based on nuclear shadowing, as well as on models including, in addition, a contribution from partonic energy loss, are in fair agreement with the experimental results.
The inclusive JPsi nuclear modification factor obtained in p-Pb and Pb-p collisions. The first uncertainty is statistical, the second one is the uncorrelated systematic uncertainty, while the third one is the partially correlated systematic uncertainty. The fourth is a global uncertainty common to p-Pb and Pb-p results.
The inclusive production cross sections at forward rapidity of J/$\psi$, $\psi$(2S), $\Upsilon$(1S) and $\Upsilon$(2S) are measured in pp collisions at $\sqrt{s} = 7$ TeV with the ALICE detector at the LHC. The analysis is based in a data sample corresponding to an integrated luminosity of 1.35 pb$^{-1}$. Quarkonia are reconstructed in the dimuon-decay channel and the signal yields are evaluated by fitting the $\mu^+\mu^-$ invariant mass distributions. The differential production cross sections are measured as a function of the transverse momentum $p_{\rm T}$ and rapidity $y$, over the ranges $0 < p_{\rm T} < 20$ GeV/$c$ for J/$\psi$, $0 < p_{\rm T} < 12$ GeV/$c$ for all other resonances and for $2.5 < y < 4$. The measured cross sections integrated over $p_{\rm T}$ and $y$, and assuming unpolarized quarkonia, are: $\sigma_{J/\psi} = 6.69 \pm 0.04 \pm 0.63$ $\mu$b, $\sigma_{\psi^{\prime}} = 1.13 \pm 0.07 \pm 0.14$ $\mu$b, $\sigma_{\Upsilon{\rm(1S)}} = 54.2 \pm 5.0 \pm 6.7$ nb and $\sigma_{\Upsilon{\rm (2S)}} = 18.4 \pm 3.7 \pm 2.2$ nb, where the first uncertainty is statistical and the second one is systematic. The results are compared to measurements performed by other LHC experiments and to theoretical models.
Differential production cross sections of J/psi as a function of pT.
Differential production cross sections of J/psi as a function of rapidity.
integrated production cross section of J/psi.
The charged-particle pseudorapidity density measured over 4 units of pseudorapidity in non-single-diffractive (NSD) p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV is presented. The average value at midrapidity is measured to be $16.81 \pm 0.71$ (syst.), which corresponds to $2.14 \pm 0.17$ (syst.) per participating nucleon. This is 16% lower than in NSD pp collisions interpolated to the same collision energy, and 84% higher than in d-Au collisions at $\sqrt{s_{\rm NN}} = 0.2$ TeV. The measured pseudorapidity density in p-Pb collisions is compared to model predictions, and provides new constraints on the description of particle production in high-energy nuclear collisions.
The pseudorapidity density of charged particles in the lab. frame.
We report on the first measurement of inclusive J/$\psi$ elliptic flow, $v_2$, in heavy-ion collisions at the LHC. The measurement is performed with the ALICE detector in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV in the rapidity range $2.5 < y < 4.0$. The dependence of the J/$\psi$ $v_2$ on the collision centrality and on the J/$\psi$ transverse momentum is studied in the range $0 < p_{\rm T} < 10$ GeV/$c$. For semi-central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV, an indication of non-zero $v_2$ is observed with a maximum value of $v_2 = 0.116 \pm 0.046 {\rm (stat.)} \pm 0.029 {\rm (syst.)}$ for J/$\psi$ in the transverse momentum range $2 < p_{\rm T} < 4$ GeV/$c$. The elliptic flow measurement complements the previously reported ALICE results on the inclusive J/$\psi$ nuclear modification factor and favors the scenario of a significant fraction of J/$\psi$ production from charm quarks in a deconfined partonic phase.
Measurements of V2 for inclusive J/PSI production for semi-central (20%-40%) collisions as a function of transverse momentum.
Measurements of V2 for inclusive J/PSI production in the transverse momentum range 1.5-10 GeV/c as a function of the number of participating nucleons.
Measurements of the uncorrected mean transverse momentum for inclusive J/PSI production in the transverse momentum range 1.5-10 GeV/c as a function of the number of participating nucleons.