The single spin asymmetry for inclusive direct-photon production has been measured using a polarized proton beam of 200 GeV/c with an unpolarized proton target at −0.15 < xf < 0.15 and 2.5 < pt < 3.1 GeV/c at Fermilab. The data on the cross section for pp → γX at 2.5 < pt < 3.8 GeV/c are also provided. The measurement was done using lead-glass calorimeters and photon detectors which surrounded the fiducial area of the calorimeters. Background rejection has been done using these surrounding photon detectors. The cross section obtained is consistent with the results of previous measurements assuming a nuclear dependence of A 1.0 . The single spin asymmetry, A N , for the direct-photon production is consistent with zero within experimental uncertainty.
No description provided.
No description provided.
The differential cross section of the charge-exchange reaction p p → n n has been measured at the CERN Low Energy Antiproton Ring (LEAR) at seven p momenta in the range 546–1287 MeV/ c . A pentanol polarized target has been used and the neutron and the antineutron have been detected in coincidence. The data cover most of the angular range.
No description provided.
No description provided.
No description provided.
We have observed the ηπ + π − and ηπ 0 π 0 decay modes of the E meson in p p annihilation at rest into π + π − π 0 π 0 η . The mass and width of the E meson are 1409 ± 3 and 86 ± 10 MeV. The production and decay branching ratio is B( p p → Eππ)B(E → ηππ) = (3.3 ± 1.0) × 10 −3 . With a spin-parity analysis we determine that J P = 0 − . The observation of the ηπ 0 π 0 decay mode establishes that E is isoscalar ( C = +1). We find that E decays to η ( ππ ) s (where ( ππ ) s is an S-wave dipion) and πa 0 (980)(→ πη ) with a relative branching ratio of (78 ± 16) %. Using the K K π production and decay branching ratio measured earlier we determine that B[E → K K π] B[E → ηππ] = 0.61 ± 0.19 . A comparison with observations in radiative J Ψ decays suggests that E and ι η (1416) are identical.
Unobserved channels (E --> ETA 2PI0)2PI0 and (E --> ETA PI+ PI-)PI+PI- was taken into account.
The reaction pp → pp π 0 has been measured using electron-cooled protons incident on an internal gas-jet target at seven different incident beam energies, from 280.7 MeV (1 MeV above the reaction threshold) up to 310.2 MeV. The pions were measured by their decay photons. In the overlapping energy region, the measured total cross sections agree with those measured in a recent Indiana experiment. The angular distributions are consistent with a 3 P 0 → 1 S 0 s 0 transition in the full energy range studied. The kinematical distributions are well described when taking into account the final state and the Coulomb interactions.
AN OVERALL 5 PCT ERROR IN NORMALIZATION IS NOT INCLUDED.
In this letter the distribution of slow target associated particles emitted in Au + Emulsion interactions at 11.6 A GeV/ c is studied. The three models RQMD, FRITIOF and VENUS are used for comparisons and especially their treatment of rescattering is investigated.
No description provided.
PROJECTILE ASSOCIATED HE-FRAGMENTS.
No description provided.
We present a study of differential two jet ratios in multi-hadronic final states produced by e + e − annihilation in the AMY detector at TRISTAN. The data are compared to the predictions of the next-to-leading logarithm parton-shower (NLL PS) Monte Carlo and the O ( α s 2 ) matrix element QCD models. We determine the strong coupling strength α s (57.3 GeV) = 0.130 ± 0.006.
The data are compared to the predictions of Monte-Carlo.
Using the p-scheme for jet clustering.
Using the E-scheme for jet clustering.
Fermilab experiment E735 located at the CO intersection region of the\(\sqrt s= 1.8\) TeV\(p\bar p\) collider analysed over 900 Φ→K+K− events. Measured were the transverse momentum spectrum, the correlation between the average transverse momentum
Corrected phi meson transverse momentum distribution at rapidity = 0.
Total inclusive cross section.
Ratio of phi to rho0 production in high and low charged particle multiplicity events.
We detected 1–10 MeV neutrons at laboratory angles from 80° to 140° in coincidence with 470 GeV muons deep inelastically scattered from H, D, C, Ca, and Pb targets. The neutron energy spectrum for Pb can be fitted with two components with temperature parameters of 0.7 and 5.0 MeV. The average neutron multiplicity for 40<ν<400 GeV is about 5 for Pb, and less than 2 for Ca and C. These data are consistent with a process in which the emitted hadrons do not interact with the rest of the nucleus within distances smaller than the radius of Ca, but do interact within distances on the order of the radius of Pb in the measured kinematic range. For all targets the lack of high nuclear excitation is surprising.
The energy spectrum for neutrons emitted from a thermalized nucleus may be expressed as a multiplicity per unit energy d(M)/d(E)=(M/T**2)*E*exp(-E/T) in which E is the neutron energy, M is the total multiplicity (isotropic in the nuclear frame), and T is the nuclear temperature. A fit by the sum of two exponentials.
The ratio of neutron and proton yields at quasifree kinematics was measured for the reactions 2H(e,e′n) and 2H(e,e′p) at momentum transfers Q2=0.125, 0.255, 0.417, and 0.605(GeV/c)2, detecting the neutron and the proton simultaneously in the same scintillator array. The neutron detection efficiency was measured in situ with the 1H(γ,π+)n reaction. From this the ratio R of 2H(e,e′n) and 2H(e,e′p) cross sections was determined and used to extract the neutron magnetic form factor GMn in a model insensitive approach, resulting in an inaccuracy between 2.1% and 3.3% in GMn.
Formfactor in nuclear magnetons.
The considerable polarization of hyperons produced at high xF has been known for a long time and has been interpreted with various theoretical models in terms of the constituents' spin. Recently, the analyzing power in inclusive Λ0 hyperon production has also been measured using the 200GeV/c Fermilab polarized proton beam. The covered kinematic range is 0.2≤xF≤1.0 and 0.1≤pT≤1.5GeV/c. The data indicate a negative asymmetry at large xF and moderate pT. These results can further test the current ideas on the underlying mechanisms for hyperon polarization.
No description provided.
No description provided.
No description provided.