We present the general properties of multihadron final states produced by e+e− annihilation at center-of-mass energies from 52 to 57 GeV in the AMY detector at the KEK collider TRISTAN. Global shape, inclusive charged-particle, and particle-flow distributions are presented. Our measurements are compared with QCD+fragmentation models that use either leading-logarithmic parton-shower evolution or QCD matrix elements at the parton level, and either string or cluster fragmentation for hadronization.
Rapidity distribution with respect to the Thrust axis.
Charged particle X distribution.
Charged particle PL distribution.
None
No description provided.
No description provided.
No description provided.
The full TASSO data have been used to study the inclusive production of strange mesons ine+e− annihilations. Differential and total cross sections have been measured in the centre of mass energy range 14 to 44 GeV forK0,\(\bar K^0\) and 34.5 to 44 GeV forK*± (892). We have investigated the strange meson production properties in jets by studying the rapidity andpt2 distributions as well as the evolution of the multiplicities as a function of the event sphericity. We find no evidence that the strange meson yields increase with increasing sphericity faster than the total charged multiplicity.
Scaled differential cross sections for K0 production. Errors are statistical and systematic combined.
Scaled differential cross section for K0 production. Errors are statistical and systematic combined.
Scaled differential cross section for K0 production. Errors are statistical and systematic combined.
We measured the differential jet-multiplicity distribution in e+e− annihilation with the Mark II detector. This distribution is compared with the second-order QCD prediction and αs is determined to be 0.123±0.009±0.005 at √s≊MZ (at the SLAC Linear Collider) and 0.149±0.002±0.007 at √s=29 GeV (at the SLAC storage ring PEP). The running of αs between these two center-of-mass energies is consistent with the QCD prediction.
DIFFERENTIAL JET MULTIPLICITIES.
DIFFERENTIAL JET MULTIPLICITIES.
An analysis of W- and Z-boson production using data from the Collider Detector at Fermilab at √s =1.8 TeV yields σ(W→ev)/σ(Z→ee)=10.2±0.8(stat)±0.4(syst). The width of the W boson, Γ(W), and a limit on the top-quark mass independent of decay mode are extracted from this measurement.
No description provided.
We present the dijet invariant-mass distribution in the region between 60 and 500 GeV, measured in 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. Jets are restricted to the pseudorapidity interval |η|<0.7. Data are compared with QCD calculations; axigluons are excluded with 95% confidence in the region 120<MA<210 GeV for axigluon width ΓA=NαsMA6, with N=5.
Corrected mass distributions for jets restricted to the pseudorapidity region ABS(ETARAP) <0.7.
We have observed six unambiguous decays of the charmed strange baryon Ξ c + (or charge conjugate Ξ c − ) in the 230 GeV/c negative pions or kaons on a copper target at the CERN SPS using silicon microstrip detectors and charge-coupled devices for vertex reconstruction. Three of them have been reconstructed through the decay chain Ξ c + → Ξ − π + π + , Ξ − → Λ 0 π − , Λ 0 → pπ − and the other three through the decay chain Ξ c + → Σ + K − π + → pπ 0 . We present our measurements of the mass, lifetime and production cross-section of the Ξ c + , as well as of the branching ration for the two decay modes.
The cross sections times branching ratio, linear A-dependence is assumed.
We have measured the total e + e − hadronic annihilation cross section at the center of mass energies between 50.0 GeV and 61.4 GeV with the TOPAZ detector at TRISTAN. The full electroweak radiative corrections (up to O(α 3 )) were applied to the data which were analysed together with the published data from PEP and PETRA. We then determined the standard model parameters, M z (the mass of the Z), sin w 2 θ (the Weinberg angle) and Λ MS (the QCD scale parameter) by comparing the experimental data with the prediction of the standard model. The best fit values are M z = 89.2 −1.8 +2.1 GeV/c 2 , sin 2 θ w = 0.233 −0.025 +0.035 and Λ MS = 0.327 −0.206 +0.275 GeV. A constraint is obtained on the heavy top quark mass through the radiative corrections if we take the SLC value of M z (91.1 GeV / c 2 ).
No description provided.
No description provided.
We accumulated e + e − annihilations into multi-hadrons at CM energies between 54.0 and 61.4 GeV with the VENUS detector at TRISTAN. Measured R -ratios are consistent with the standard model using the Z-boson mass; 91.1 GeV/ c 2 . Using two new observables, we searched for a planar four-jet and other multi-jet events resulting from the decay of a charge — 1 3 e b ' quark. Having observed no positive signals, we excluded b' masses between 19.4 and 28.2 GeV/ c 2 with a 95% confidence level, regardless of branching into charged current and loop-induced flavor-changing neutral current decay, including a possible Higgs decay process. The charge + 2 3 e top quark was excluded below f30.2 GeV/ c 2 .
R value measurements.
We report on properties of hadronic events from e + e − annihilation observed by the ALEPH detector at the large Electron Positron Collider at CERN. The center-of-mass energy was s =91.0−91.3 GeV . Measured distributions of the global event-shape variables sphericity, aplanarity, thrust and minor value, and of the inclusive variables x p , p ⊥ in , p ⊥ out and y are presented. We measure a mean charged multiplicity in hadronic events of 〈 N ch 〉=21.3±0.1 (statistical)±0.6 (systematic). The data are in good agreement with QCD-based models which use the leading-logarithm approximation, and are less well described by a model using O( α s 2 ) QCD.
NO RAD. CORR APPLIED.