Version 2
Beauty production in pp collisions at $\sqrt{s}$ = 2.76 TeV measured via semi-electronic decays

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 738 (2014) 97-108, 2014.
Inspire Record 1296861 DOI 10.17182/hepdata.858

The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity $|y|<0.8$ and transverse momentum $1<p_{\mathrm{T}}<10$ GeV/$c$, in pp collisions at $\sqrt{s} = $ 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD calculations agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, $\sigma_{\mathrm{b} \rightarrow \mathrm{e}} = 3.47\pm0.40(\mathrm{stat})^{+1.12}_{-1.33}(\mathrm{sys})\pm0.07(\mathrm{norm}) \mu$b, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) predictions to obtain the total b$\bar{\mathrm{b}}$ production cross section, $\sigma_{\mathrm{b\bar{b}}} = 130\pm15.1(\mathrm{stat})^{+42.1}_{-49.8}(\mathrm{sys})^{+3.4}_{-3.1}(\mathrm{extr})\pm2.5(\mathrm{norm})\pm4.4(\mathrm{BR}) \mu$b.

16 data tables

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/$c$.

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/c.

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in EMCal triggered events in the electron transverse momentum range 4.5-6 GeV/$c$.

More…

Energy Dependence of the Transverse Momentum Distributions of Charged Particles in pp Collisions Measured by ALICE

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 73 (2013) 2662, 2013.
Inspire Record 1241422 DOI 10.17182/hepdata.61787

Differential cross sections of charged particles in inelastic pp collisions as a function of $p_{\rm T}$ have been measured at $\sqrt{s}=$ 0.9, 2.76 and 7 TeV at the LHC. The $p_{\rm T}$ spectra are compared to NLO-pQCD calculations. Though the differential cross section for an individual $\sqrt{s}$ cannot be described by NLO-pQCD, the relative increase of cross section with $\sqrt{s}$ is in agreement with NLO-pQCD. Based on these measurements and observations, procedures are discussed to construct pp reference spectra at $\sqrt{s} =$ 2.76 and 5.02 TeV up to $p_{\rm T}$ = 50 GeV/$c$ as required for the calculation of the nuclear modification factor in nucleus-nucleus and proton-nucleus collisions.

3 data tables

The normalized differential primary charged particle cross sections measured at 0.9, 2.76 and 7 TeV centre-of- mass energies. Additional systematic error for 0.9 TeV data: +5.1% -4.0%. Additional systematic error for 2.76 TeV data: +1.9% -1.9%. Additional systematic error for 7.0 TeV data: +3.6% -3.6%.

The ratios of differential cross sections of charged particles at different collisions energies.

The constructed reference P-P spectra for comparison with PB-PB and p-PB spectra.


Study of the inclusive production of charged pions, kaons, and protons in pp collisions at sqrt(s) = 0.9, 2.76, and 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 72 (2012) 2164, 2012.
Inspire Record 1123117 DOI 10.17182/hepdata.59366

Spectra of identified charged hadrons are measured in pp collisions at the LHC for sqrt(s) = 0.9, 2.76, and 7 TeV. Charged pions, kaons, and protons in the transverse-momentum range pt approximately 0.1-1.7 GeV and for rapidities abs(y) < 1 are identified via their energy loss in the CMS silicon tracker. The average pt increases rapidly with the mass of the hadron and the event charged-particle multiplicity, independently of the center-of-mass energy. The fully corrected pt spectra and integrated yields are compared to various tunes of the PYTHIA6 and PYTHIA8 event generators.

80 data tables

Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) and at a centre-of-mass energy of 900 GeV.

Measured transverse momentum distributions of identified charged hadrons (PI-, K- and PBAR) and at a centre-of-mass energy of 900 GeV.

Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) and at a centre-of-mass energy of 2760 GeV.

More…

Kshort and Lambda production in pp interactions at sqrt(s) = 0.9 and 7 TeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 85 (2012) 012001, 2012.
Inspire Record 944826 DOI 10.17182/hepdata.58341

The production of Kshort and Lambda hadrons is studied in inelastic pp collisions at sqrt(s) = 0.9 and 7 TeV collected with the ATLAS detector at the LHC using a minimum-bias trigger. The observed distributions of transverse momentum, rapidity, and multiplicity are corrected to hadron level in a model-independent way within well defined phase-space regions. The distribution of the production ratio of Lambdabar to Lambda baryons is also measured. The results are compared with various Monte Carlo simulation models. Although most of these models agree with data to within 15% in the Kshort distributions, substantial disagreements with data are found in the Lambda distributions of transverse momentum.

16 data tables

The corrected transverse momentum distribution of KS mesons at 7000 GeV.

The corrected rapidity distribution of KS mesons at 7000 GeV.

The corrected multiplicity distribution of KS mesons at 7000 GeV.

More…

Studying Parton Energy Loss in Heavy-Ion Collisions via Direct-Photon and Charged-Particle Azimuthal Correlations

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 82 (2010) 034909, 2010.
Inspire Record 839470 DOI 10.17182/hepdata.101353

Charged-particle spectra associated with direct photon ($\gamma_{dir} $) and $\pi^0$ are measured in $p$+$p$ and Au+Au collisions at center-of-mass energy $\sqrt{s_{_{NN}}}=200$ GeV with the STAR detector at RHIC. A hower-shape analysis is used to partially discriminate between $\gamma_{dir}$ and $\pi^0$. Assuming no associated charged particles in the $\gamma_{dir}$ direction (near side) and small contribution from fragmentation photons ($\gamma_{frag}$), the associated charged-particle yields opposite to $\gamma_{dir}$ (away side) are extracted. At mid-rapidity ($|\eta|<0.9$) in central Au+Au collisions, charged-particle yields associated with $\gamma_{dir}$ and $\pi^0$ at high transverse momentum ($8< p_{T}^{trig}<16$ GeV/$c$) are suppressed by a factor of 3-5 compared with $p$ + $p$ collisions. The observed suppression of the associated charged particles, in the kinematic range $|\eta|<1$ and $3< p_{T}^{assoc} < 16$ GeV/$c$, is similar for $\gamma_{dir}$ and $\pi^0$, and independent of the $\gamma_{dir}$ energy within uncertainties. These measurements indicate that the parton energy loss, in the covered kinematic range, is insensitive to the parton path length.

4 data tables

The $z_{T}$ dependence of $\pi^{0}-h^{\pm}$ near side and away-side associated particle yields. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.

The $z_{T}$ dependence of away-side associated-particle yields for $\pi^{0}-h^{\pm}$ triggers and $\gamma_{dir}$ triggers. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.

The $z_{T}$ dependence $I_{AA}$ for $\pi^{0}-h^{\pm}$ triggers and $\gamma_{dir}$ triggers. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.

More…

Neutral Pion Production in Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 044905, 2009.
Inspire Record 825863 DOI 10.17182/hepdata.96845

The results of mid-rapidity ($0 < y < 0.8$) neutral pion spectra over an extended transverse momentum range ($1 < p_T < 12$ GeV/$c$) in $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions, measured by the STAR experiment, are presented. The neutral pions are reconstructed from photons measured either by the STAR Barrel Electro-Magnetic Calorimeter (BEMC) or by the Time Projection Chamber (TPC) via tracking of conversion electron-positron pairs. Our measurements are compared to previously published $\pi^{\pm}$ and $\pi^0$ results. The nuclear modification factors $R_{\mathrm{CP}}$ and $R_{\mathrm{AA}}$ of $\pi^0$ are also presented as a function of $p_T$ . In the most central Au+Au collisions, the binary collision scaled $\pi^0$ yield at high $p_T$ is suppressed by a factor of about 5 compared to the expectation from the yield of p+p collisions. Such a large suppression is in agreement with previous observations for light quark mesons and is consistent with the scenario that partons suffer considerable energy loss in the dense medium formed in central nucleus-nucleus collisions at RHIC.

20 data tables

The diphoton invariant mass distributions using the EMC-TPC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

The diphoton invariant mass distributions using the EMC-TPC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

The diphoton invariant mass distributions using the EMC-EMC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

More…

J/psi production at high transverse momentum in p+p and Cu+Cu collisions at \sNN=200GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 041902, 2009.
Inspire Record 817120 DOI 10.17182/hepdata.55733

The STAR collaboration at RHIC presents measurements of \Jpsi$\to{e^+e^-}$ at mid-rapidity and high transverse momentum ($p_T>5$ GeV/$c$) in \pp and central \cucu collisions at \sNN = 200 GeV. The inclusive \Jpsi production cross section for \cucu collisions is found to be consistent at high $p_T$ with the binary collision-scaled cross section for \pp collisions, in contrast to previous measurements at lower $p_T$, where a suppression of \Jpsi production is observed relative to the expectation from binary scaling. Azimuthal correlations of $J/\psi$ with charged hadrons in \pp collisions provide an estimate of the contribution of $B$-meson decays to \Jpsi production of $13% \pm 5%$.

8 data tables

J/psi differential production cross section in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

More…

Version 2
Erratum: Transverse momentum and centrality dependence of high-\pt\ non-photonic electron suppression in Au+Au collisions at \sqrtsNN\ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 98 (2007) 192301, 2007.
Inspire Record 721275 DOI 10.17182/hepdata.41842

The STAR collaboration at RHIC reports measurements of the inclusive yield of non-photonic electrons, which arise dominantly from semi-leptonic decays of heavy flavor mesons, over a broad range of transverse momenta ($1.2 < \pt < 10$ \gevc) in \pp, \dAu, and \AuAu collisions at \sqrtsNN = 200 GeV. The non-photonic electron yield exhibits unexpectedly large suppression in central \AuAu collisions at high \pt, suggesting substantial heavy quark energy loss at RHIC. The centrality and \pt dependences of the suppression provide constraints on theoretical models of suppression.

14 data tables

Non photonic electron yield in P+P collisions versus PT To obtain a differential cross-section in mb/(GeV2), multiply listed data by 30 Note that, in addition to the statistical and systematical errors, there is a normalization error on the value, given in the second column.

Non photonic electron yield in P+P collisions versus $p_{T}$. To obtain a differential cross-section in mb/(GeV$^2$), multiply listed data by 30.

Non photonic electron yield in minimum bias D+AU collisions versus PT To obtain a differential cross-section in mb/(GeV2), multiply listed data by 30 Note that, in addition to the statistical and systematical errors, there is a normalization error on the value, given in the second column.

More…

Transverse momentum correlations and minijet dissipation in Au Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
J.Phys.G 34 (2007) 799-816, 2007.
Inspire Record 656302 DOI 10.17182/hepdata.102087

Measurements of two-particle correlations on transverse momentum $p_t$ for Au-Au collisions at $\sqrt{s_{NN}} = 130$ GeV are presented. Significant large-momentum-scale correlations are observed for charged primary hadrons with $0.15 \leq p_t \leq 2$ GeV/$c$ and pseudorapidity $|\eta| \leq 1.3$. Such correlations were not observed in a similar study at lower energy and are not predicted by theoretical collision models. Their direct relation to mean-$p_t$ fluctuations measured in the same angular acceptance is demonstrated. Positive correlations are observed for pairs of particles which have large $p_t$ values while negative correlations occur for pairs in which one particle has large $p_t$ and the other has much lower $p_t$. The correlation amplitudes per final state particle increase with collision centrality. The observed correlations are consistent with a scenario in which the transverse momentum of hadrons associated with initial-stage semi-hard parton scattering is dissipated by the medium to lower $p_t$.

4 data tables

Symmetrized pair-density net ratios $\widehat{r} [X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for most-central Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.

Symmetrized pair-density net ratios $\widehat{r}[X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for mid-central Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.

Symmetrized pair-density net ratios $\widehat{r}[X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for mid-peripheral Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.

More…

Open charm yields in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 94 (2005) 062301, 2005.
Inspire Record 653868 DOI 10.17182/hepdata.43117

Mid-rapidity open charm spectra from direct reconstruction of $D^{0}$($\bar{D^0}$)$\to K^{\mp}\pi^{\pm}$ in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at \srt = 200 GeV are reported. The $D^{0}$($\bar{D^0}$) spectrum covers a transverse momentum ($p_T$) range of 0.1 $<p_T<$ 3 \GeVc whereas the electron spectra cover a range of 1 $<p_T<$ 4 GeV/$c$. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at mid-rapidity for open charm production from d+Au collisions at RHIC is $d\sigma^{NN}_{c\bar{c}}/dy$=0.30$\pm$0.04 (stat.)$\pm$0.09(syst.) mb. The results are compared to theoretical calculations. Implications for charmoniumm results in A+A collisions are discussed.

8 data tables

Inclusive electrons yield versus transverse momentum in D+AU collisions Data points at PT = 2.2, 2.7 and 3.5 GeV/c was obtained using only the TPC (Time Projection Chamber) and cover a pseudo-rapidity range of -1<eta<1, while other points were obtained using both a prototypeTime-of-Flight System and the TPC and cover a pseudo-rapidity range of -1<eta<0.

Inclusive electrons yield versus transverse momentum in P+P collisions.

D0 yield versus transverse momentum in D+AU collisions.

More…