Measurement of $g$(a) and $g(V$), the Neutral Current Coupling Constants to Leptons

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 236 (1990) 109-115, 1990.
Inspire Record 283470 DOI 10.17182/hepdata.29715

We have measured both the rates and the forward-backward asymmetry of ℓ + ℓ − from Z 0 →ℓ + ℓ − (where ℓ= μ , τ ) with the L3 detector. We obtained Γ ℓℓ =88±4±3 MeV and the vector neutral current coupling constant, g v =0.00±0.07 and the axial vector neutral current coupling constant, g A =−0.515±0.015.

2 data tables

No description provided.

No description provided.


A MEASUREMENT OF THE Z0 LEPTONIC PARTIAL WIDTHS AND THE FORWARD - BACKWARD ASYMMETRY

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
L3-005, 1990.
Inspire Record 294576 DOI 10.17182/hepdata.29691

None

4 data tables

No description provided.

No description provided.

No description provided.

More…

Studies of hadronic event structure and comparisons with QCD models at the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Z.Phys.C 55 (1992) 39-62, 1992.
Inspire Record 334954 DOI 10.17182/hepdata.14566

The structure of hadronic events fromZ0 decay is studied by measuring event shape variables, factorial moments, and the energy flow distribution. The distributions, after correction for detector effects and initial and final state radiation, are compared with the predictions of different QCD Monte Carlo programs with optimized parameter values. These Monte Carlo programs use either the second order matrix element or the parton shower evolution for the perturbative QCD calculations and use the string, the cluster, or the independent fragmentation model for hadronization. Both parton shower andO(α2s matrix element based models with string fragmentation describe the data well. The predictions of the model based on parton shower and cluster fragmentation are also in good agreement with the data. The model with independent fragmentation gives a poor description of the energy flow distribution. The predicted energy evolutions for the mean values of thrust, sphericity, aplanarity, and charge multiplicity are compared with the data measured at different center-of-mass energies. The parton shower based models with string or cluster fragmentation are found to describe the energy dependences well while the model based on theO(α2s calculation fails to reproduce the energy dependences of these mean values.

16 data tables

Unfolded Thrust distribution. Statistical error includes statistical uncertainties of the data as well as of the unfolding Monte Carlo Sample. The systematic error combines the uncertainties of measurements and of the unfolding procedure.

Unfolded Major distribution where Major is defined in the same way as Thrust but is maximized in a plane perpendicular to the Thrust axis.

Unfolded Minor distribution where the minor axis is defined to give an orthonormal system.

More…

Measurement of $\Z^0$ Decays to Hadrons and a Precise Determination of the Number of Neutrino Species

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 237 (1990) 136-146, 1990.
Inspire Record 286423 DOI 10.17182/hepdata.29736

We have made a precise measurement of the cross section for e + e − →Z 0 →hadrons with the L3 detector at LEP, covering the s range from 88.28 to 95.04 GeV. From a fit to the Z 0 mass, total width, and the hadronic cross section to be M Z 0 =91.160 ± 0.024 (experiment) ±0.030(LEP) GeV, Γ Z 0 =2.539±0.054 GeV, and σ h ( M Z 0 )=29.5±0.7 nb. We also used the fit to the Z 0 peak cross section and the width todetermine Γ invisible =0.548±0.029 GeV, which corresponds to 3.29±0.17 species of light neutrinos. The possibility of four or more neutrino flavors is thus ruled out at the 4σ confidence level.

2 data tables

No description provided.

Total hadronic cross section.


A Determination of the Properties of the Neutral Intermediate Vector Boson Z0

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 231 (1989) 509, 1989.
Inspire Record 282041 DOI 10.17182/hepdata.29768

We report the results of first physics runs of the L3 detector at LEP. Based on 2538 hadron events, we determined the mass m z 0 and the width Γ z 0 of the intermediate vector boson Z 0 to be m z 0 =91.132±0.057 GeV (not including the 46 MeV LEP machine energy uncertainty) and Γ z 0 =2.588±0.137 GeV. We also determined Γ invisible =0.567±0.080 GeV, corresponding to 3.42±0.48 number of neutrino flavors. We also measured the muon pair cross section and determined the branching ratio Γ μμ = Γ h =0.056±0.006. The partial width of Z 0 →e + e − is Γ ee =88±9±7 MeV.

1 data table

No description provided.


Measurement of $\Z^0 \to b \bar{b}$ Decay Properties

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 241 (1990) 416-424, 1990.
Inspire Record 295040 DOI 10.17182/hepdata.29716

We have measured the properties of Z 0 → b b decays using a sample of 944 inclusive muon events, corresponding to 18 000 hadron events obtained with the L3 detector at LEP. We measured the partial decay width of the Z 0 into b b , Γ b b =353±48 MeV , and we determined the vector coupling of the Z 0 to the b quark; g rmv 2 (b)=0.095±0.047. We measured the forward-backward charge asymmetry in e + e − → b b events at √ s ≈ M v , and obtained A b b =13.3±9.9% .

1 data table

BOTTOM quark charge asymmetry measurement.


Measurement of inclusive eta production in hadronic decays of the Z0

The L3 collaboration Adriani, O. ; Aguilar-Benitez, M. ; Ahlen, S. ; et al.
Phys.Lett.B 286 (1992) 403-412, 1992.
Inspire Record 336180 DOI 10.17182/hepdata.29161

We present a study of the inclusive η production based on 300 000 hadronic Z 0 decays. The measured inclusive momentum distribution can be reproduced by parton shower Monte Carlo programs and also by an analytical QCD calculation. Comparing our results with low energy e + e − data, we find that QCD describes both the shape and the energy evolution of the η spectrum. The comparison of η production rates in quark- and gluon-enriched jet samples does not show statistically significant evidence for more abundant production of η mesons in gluon fragmentation.

2 data tables

Differential cross section for inclusive eta production, normalized to the total hadronic cross section.

Differential cross section for inclusive eta production, normalized to the total hadronic cross section.


A Direct determination of the number of light neutrino families from e+ e- ---> neutrino anti-neutrino gamma at LEP

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 275 (1992) 209-221, 1992.
Inspire Record 324176 DOI 10.17182/hepdata.29260

The L3 detector at LEP has been used to determine the number of light neutrino families by measuring the cross section of single photon even in e + e − collisions at energies near the Z 0 resonance. We have observed 61 single photon candidates with more than 1.5 GeV of deposited energy in the barrel electromagnetic calorimeter, for a total integrated luminosity of 3.0 pb −1 . From a likelihood fir to the single photon cross sections, we determin N ν =3.24 ± 0.46 ( statistical ) ±0.22 ( systematic ).

1 data table

Corrected single photon cross sections. Errors represent 68 pct CL intervals and take into account the background fluctuations.


Measurement of electroweak parameters from hadronic and leptonic decays of the Z0

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Z.Phys.C 51 (1991) 179-204, 1991.
Inspire Record 314418 DOI 10.17182/hepdata.14940

From the measured ratio of the invisible and the leptonic decay widths of theZ0, we determine the number of light neutrino species to beNv=3.05±0.10. We include our measurements of the forward-backward asymmetry for the leptonic channels in a fit to determine the vector and axial-vector neutral current coupling constants of charged leptons to theZ0. We obtain\(\bar g_V=- 0.046_{ - 0.012}^{ + 0.015}\) and\(\bar g_A=- 0.500 \pm 0.003\). In the framework of the Standard Model, we estimate the top quark mass to bemt=193−69+52±16 (Higgs) GeV, and we derive a value for the weak mixing angle of sin2θW=1−(MW/MZ)2=0.222 ± 0.008, corresponding to an effective weak mixing angle of\(\sin ^2 \bar \theta _W= 0.2315\pm0.0025\).

15 data tables

Additional systematic uncertainty of 0.4 pct.

Acceptance corrected cross section for cos(theta)<0.8 and for extrapolation to full solid angle. Additional systematic uncertainty of 0.8 pct.

Acceptance corrected cross section for cos(theta)<0.7 and for extrapolation to full solid angle. Additional systematic uncertainty of 2.1 pct.

More…

Determination of alpha-s from energy-energy correlations measured on the Z0 resonance.

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 257 (1991) 469-478, 1991.
Inspire Record 324427 DOI 10.17182/hepdata.29467

We present a study of energy-energy correlations based on 83 000 hadronic Z 0 decays. From this data we determine the strong coupling constant α s to second order QCD: α s (91.2 GeV)=0.121±0.004(exp.)±0.002(hadr.) −0.006 +0.009 (scale)±0.006(theor.) from the energy-energy correlation and α s (91.2 GeV)=0.115±0.004(exp.) −0.004 +0.007 (hadr.) −0.000 +0.002 (scale) −0.005 +0.003 (theor.) from its asymmetry using a renormalization scale μ 1 =0.1 s . The first error (exp.) is the systematic experimental uncertainly, the statistical error is negligible. The other errors are due to hadronization (hadr.), renormalization scale (scale) uncertainties, and differences between the calculated second order corrections (theor.).

3 data tables

Statistical errors are equal to or less than 0.6 pct in each bin. There is also a 4 pct systematic uncertainty.

ALPHA_S from the EEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.

ALPHA_S from the AEEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.