The reactions\(\bar pp \to \bar \Lambda \Lambda \),\(\bar \Lambda \Sigma ^0+ C.C.\),\(\bar \Sigma ^ +\Sigma ^ +\) and\(\bar \Sigma ^ -\Sigma ^ -\) are studied at 2.2 GeV/c. The cross-section, differential cross-section, polarization and spin correlations (between the\(\bar \Lambda \) and Λ hyperons) are discussed.
No description provided.
No description provided.
LAMBDA AND ALAMBDA POLARIZATIONS ASSUMED EQUAL. SPIN CORRELATIONS ALSO ESTIMATED.
The angular dependence of the asymmetry for negative-pion photoproduction on neutrons by linearly polarized photons has been measured for photon energies 260, 300, 350, 400, 450, and 500 MeV at center-of-mass angles 60°, 75°, 90°, 150°, and 120°. The results are compared with theoretical models of low-energy single-pion photoproduction. The observed asymmetry below 400 MeV shows good agreement with predictions of dispersion-theoretical models by Berends, Donnachie, and Weaver and by Schwela. The asymmetry values in the 400-500 MeV energy region suggest that smaller M1− amplitude is more favorable.
No description provided.
No description provided.
No description provided.
The results of the total cross section measurements of neutrons on protons, deuterons and nuclei C, O, Al, Cu, Sn, Pb in the energy range of 28–54 GeV are reported.
.
.
.
None
No description provided.
We have measured cross section for γ , K S °, Λ and Λ production at 102 GeV/ c and find: σ ( γ ) = 170 ± 16 mb ., σ ( K S °) = 4.6 ± 0.5 mb ., σ ( Λ ) = 3.2 ± 0.4 mb ., and σ( Λ ) = 0.23 ± 0.10 mb. Both 〈 n π °〉 and 〈 n Ks °〉 appear to rise linearly with n - while the ratio 〈 n Ks °〉/〈 n π °〉 is approximately independent of n - . The integrated invariant cross section as a function of x as well as d σ /d y and d σ /d p T 2 are presented and compared with other data.
No description provided.
Cross sections for resonance production in the reactions π ± p → p π ± π + π − at 16 GeV/ c are determined by a maximum likelihood fit, making use of the measurements of all individual events. The reactions are described by a simple parametrization based on an incoherent superposition of amplitudes for quasi two-body and quasi three-body processes and a non-resonant backgroud. In this way the reflections are accounted for in a consistent way. Thus cross sections are obtained for Δ ++ , Δ 0 , ρ 0 and f 0 production which do not suffer from the uncertainties of background subtraction typical of the usual technique of fitting individual mass distributions.
TWO PARTICLE RESONANCE CROSS SECTIONS.
CHANNEL FRACTIONS FROM THE FITS. THE AUTHORS WARN AGAINST DERIVING CROSS SECTIONS FOR THREE-PARTICLE RESONANCES.
The asymmetry of the cross section for π + photoproduction from a polarized butanol target has been measured at a c.m. angle 90° and photon energies between 300 and 900 MeV by a single-arm spectrometer detecting positive pions. Our results indicate that the asymmetry has clear positive peaks at photon energies 400 and 700 MeV with a deep valley at about 600 MeV. The general feature of the results is well reproduced by the phenomenological analyses made by Walker and ourselves; however, the best fit to the polarized target asymmetry data seems to give a somewhat different set of parameters from that given by Walker.
No description provided.
Data on the inclusive production spectra of K S 0 and Λ from proton-proton collisions at 19 GeV are presented and discussed in connection with the earlier studied inclusive π − production spectrum. The three single-particle spectra are compared with a crude two-center thermal model for the average radiation from the pp collisions.
No description provided.
The differential cross sections for the reaction γ + n → π 0 + n have been measured at pions angles of 45°, 60°, 105°, 120° and 140° in the c.m.s. for photon energies of 500–900 MeV. Both π 0 meson and recoil neutron from a liquid deuterium target were detected with a pair of Čerenkov counters combined with lead spark chambers and a hodoscope consisting of 16 modules of plastic scintillation counters.
The differential cross section for the reaction γp → π 0 p at forward angles has been measured in the energy region between 350 MeV and 1175 MeV. A phenomenological multiple analysis was carried out on the present data together with other data.
No description provided.
No description provided.
No description provided.