Date

QCD studies with e+ e- annihilation data at 130-GeV and 136-GeV.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 72 (1996) 191-206, 1996.
Inspire Record 418007 DOI 10.17182/hepdata.47564

We have studied hadronic events produced at LEP at centre-of-mass energies of 130 and 136 GeV. Distributions of event shape observables, jet rates, momentum spectra and multiplicities are presented and compared to the predictions of several Monte Carlo models and analytic QCD calculations. From fits of event shape and jet rate distributions to\({\mathcal{O}}(\alpha _s^2 ) + NLLA\) QCD calculations, we determineαs(133 GeV)=0.110±0.005(stat.)±0.009(syst.). We measure the mean charged particle multiplicity 〈nch〉=23.40±0.45(stat.) ±0.47(syst.) and the position ζ0 of the peak in the ζp = ln(1/xp) distribution ζ0=3.94±0.05(stat.)±0.11(syst.). These results are compared to lower energy data and to analytic QCD or Monte Carlo predictions for their energy evolution.

23 data tables match query

Determination of alpha_s.

Multiplicity and high moments.

Tmajor distribution.

More…

Study of Quark Fragmentation at 29-GeV: Global Jet Parameters and Single Particle Distributions

Bender, D. ; Derrick, M. ; Fernandez, E. ; et al.
Phys.Rev.D 31 (1985) 1, 1985.
Inspire Record 201482 DOI 10.17182/hepdata.23581

In this paper, results are presented from a study of the hadronic final states in e+e− annihilation at 29 GeV. The data were obtained with the High Resolution Spectrometer (HRS) at the SLAC PEP e+e− colliding-beam facility. The results are based on 6342 selected events corresponding to an integrated luminosity of 19.6 pb−1. The distributions of the events in sphericity (S), thrust (T), and aplanarity (A) are given and compared to other e+e− data in the same energy range. We measure 〈S〉=0.130±0.003±0.010 and 〈1-T〉=0.100±0.002. The sphericity distribution is compared to sphericity measurements made for beam jets in hadronic collisions as well as jets studied in neutrino scattering. The data sample is further reduced to 4371 events with the two-jet selections, S≤0.25 and A≤0.1. The single-particle distributions in the longitudinal and transverse directions are given. For low values of the momentum fraction (z=2p/W), the invariant distribution shows a maximum at z∼0.06, consistent with a QCD expectation. The data at high Feynman x (xF) show distribution consistent with being dominated by a (1-xf)2 variation for the leading quark-meson transition. The rapidity distribution shows a shallow central minimum with a height (1/NevdNh/dY‖Y=0=2.3±0.02±0.07. The mean charged multiplicity is measured to be 〈nch〉=13.1±0.05±0.6. The mean transverse momentum relative to the thrust axis 〈pT〉 rises as a function of z to a value of 0.70±0.02 GeV/c for z≳0.3. The distributions are compared to those measured in other reactions.

25 data tables match query

New values supplied 6.7.87 by M.Derrick.

No description provided.

New values supplied 6.7.87 by M. Derrick.

More…

Charged-particle multiplicities of quark and gluon jets in e+ e- annihilation at TRISTAN.

The TOPAZ collaboration Nakabayashi, K. ; Yamauchi, M. ; Abe, K. ; et al.
Phys.Lett.B 413 (1997) 447-452, 1997.
Inspire Record 454183 DOI 10.17182/hepdata.28238

Charged-particle multiplicity was studied in e + e − annihilation at s = 57.8 GeV using the TOPAZ detector at TRISTAN. The average multiplicity was 〈 n ch 〉 = 17.64± 0.05(stat.) ± 0.41(syst.). It was found that the multiplicity depends on the thrust ( T ) of an event. From extrapolating this relation to T = 2 3 , the multiplicity for three-fold symmetric events was estimated to be 〈n ch 〉 T = 2 3 = 23.50 −1.45 +1.25 . From this, the multiplicity ratio between gluon- and quark-jet was estimated to be r g q = 1.46 −0.13 +0.09 without any possible bias from jet clustering.

4 data tables match query

No description provided.

Multiplicity measured for events with a Thrust of 2/3. These are three-foldsymmetric events.

Mean charged particle multiplicity as function of -log(1-THRUST).

More…

QCD studies with e+ e- annihilation data at 161-GeV.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 75 (1997) 193-207, 1997.
Inspire Record 440721 DOI 10.17182/hepdata.47487

We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.

26 data tables match query

Determination of alpha_s.

Multiplicity and higher moments.

Thrust distribution.

More…

Test of QCD analytic predictions for the multiplicity ratio between gluon and quark jets.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Phys.Lett.B 388 (1996) 659-672, 1996.
Inspire Record 423486 DOI 10.17182/hepdata.47714

Gluon jets with about 39 GeV energy are identified in hadronic Z 0 decays by tagging two jets in the same hemisphere of an event as quark jets. Identifying the gluon jet to be all the particles observed in the hemisphere opposite to that containing the two tagged jets yields an inclusive gluon jet definition corresponding to that used in analytic calculations, allowing the first direct test of those calculations. In particular, this jet definition yields results which are only weakly dependent on a jet finding algorithm. We find r ch. =1.552±0.0041 ( stat ) ±0.061 ( syst. ) for the ratio of the mean charged particle multiplicity in gluon jets to that in light quark uds jets, where the uds jets are identified using an inclusive jet definition similar to that used for the gluon jets. Our result is in general agreement with the prediction of a recent analytic calculation which incorporates energy conservation into the parton shower branching processes, but is considerably smaller than analytic predictions which do not incorporate energy conservation.

2 data tables match query

Mean charged particle multiplicity in gluon jets.

Mean charged particle multiplicity in single hemisphere light quark jets.


Measurement of the longitudinal, transverse and asymmetry fragmentation functions at LEP

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 68 (1995) 203-214, 1995.
Inspire Record 395450 DOI 10.17182/hepdata.48040

The fragmentation function for the process e+e−→h+X, whereh represents a hadron, may be decomposed into transverse, longitudinal and asymmetric contributions by analysis of the distribution of polar production angles. A number of new tests of QCD have been proposed using these fragmentation functions, but so far no data have been published on the separate components. We have performed such a separation using data on charged particles from hadronic Z0 decays atOpal, and have compared the results with the predictions of QCD. By integrating the fragmentation functions, we determine the average charged particle multiplicity to be\(\overline {n_{ch} }= 21.05 \pm 0.20\). The longitudinal to total cross-section ratio is determined to be σL/σtot=0.057±0.005. From the longitudinal fragmentation function we are able to extract the gluon fragmentation function. The connection between the asymmetry fragmentation function and electroweak asymmetrics is discussed.

4 data tables match query

Transverse component of the fragmentation function.

Longitudinal component of the fragmentation function.

Asymmetry component of the fragmentation function.

More…

Charged Particle Multiplicity Distributions in $e^+ e^-$ Annihilation at 29-{GeV}: A Comparison With Hadronic Data

Derrick, M. ; Gan, K.K. ; Kooijman, P. ; et al.
Z.Phys.C 35 (1987) 323, 1987.
Inspire Record 235873 DOI 10.17182/hepdata.15773

The charged particle multiplicity distributions for two-jet events ine+e− annihilation at 29 GeV have been measured using the High Resolution Spectrometer at PEP. A Poisson distribution describes the data for both the complete event and for the single jets. In addition, no correlation is observed between the multiplicities in the two jets of an event. For fixed values of the prong number of the complete event, the multiplicity sharing between the two jets is in good agreement with a binomial distribution. The rapidity gap distribution is exponential with a slope equal to the mean rapidity density. These observations, which are consistent with a picture of independent emission of single particles, are contrasted to the results from soft hadronic collisions and conclusions are drawn about the nature of clusters.

3 data tables match query

Single Jet Mean Multiplicities.

Total event charged multiplicities.

Forward backward charged particle multiplicity splits for fixed total multiplicity.


Comparison of Charged Particle Multiplicities in Quark and Gluon Jets Produced in $e^+ e^-$ Annihilation at 29-{GeV}

Derrick, M. ; Gan, K.K. ; Kooijman, P. ; et al.
Phys.Lett.B 165 (1985) 449-453, 1985.
Inspire Record 17442 DOI 10.17182/hepdata.30286

The charged particle multiplicities of the quark and gluon jets in the three-fold symmetric e + e − → q q g events at √ s = 29 GeV have been studied using the high resolution spectrometer at PEP. A value of 〈 n 〉 g = 6.7 −2.1 +1.1 ±1.0 for gluon jet s with an energy of 9.7 −2.0 +1.5 GeV is measured. The ratio, 〈 n 〉 g /〈 n 〉 q , is 1.29 −0.41 +0.21 ±0.20, which i s significantly lower than the value of 9 4 naively expected from the ration of the gluon-to-quark color charges.

1 data table match query

Mean jet charged particle interpretations for gluon and quark jets as described above.


Measurements of flavour dependent fragmentation functions in Z0 --> q anti-q events.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Eur.Phys.J.C 7 (1999) 369-381, 1999.
Inspire Record 472637 DOI 10.17182/hepdata.49410

Fragmentation functions for charged particles in Z -> qq(bar) events have been measured for bottom (b), charm (c) and light (uds) quarks as well as for all flavours together. The results are based on data recorded between 1990 and 1995 using the OPAL detector at LEP. Event samples with different flavour compositions were formed using reconstructed D* mesons and secondary vertices. The \xi_p = ln(1/x_E) distributions and the position of their maxima \xi_max are also presented separately for uds, c and b quark events. The fragmentation function for b quarks is significantly softer than for uds quarks.

9 data tables match query

Fragmentation function for 'uds-quark' events.

Fragmentation function for 'c-quark' events.

Fragmentation function for 'b-quark' events.

More…

Measurement of the inclusive production of neutral pions and charged particles on the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 259 (1991) 199-208, 1991.
Inspire Record 314407 DOI 10.17182/hepdata.29468

We present a study of the inclusive production of neutral pions and charged particles from 112 000 hadronic Z 0 decays. The measured inclusive momentum distributions can be reproduced by parton shower Monte Carlo programs and also by an analytical QCD calculation. Comparing our results to e + e − data between √ s = 9 and 91 GeV, we findfind that the evolution of the spectra with center of mass energy is consistent with the QCD predictions.

6 data tables match query

No description provided.

Error is dominated by systematic uncertainties.

No description provided.

More…