The fermilab high-energy photoproduction experiment E687 provides a sample of approximately 90 events of the decay mode D + s → φμ + ν . The ratios of the form factors governing the decay are measured to be R v =1.8±0.9±0.2 and R 2 = 1.1±0.8±0.1, implying a polarization of Г 1 /Г t = 1.0±0.5±0.1 for the electron decay, consistent with our measurement of the form factor for the decay D + → K ∗0 μ + ν .
With a vetor meson in the final state, there are four formfactors, V(Q2), A1(Q2), A2(Q2), A3(Q2). Charge conjugated states are understood.
During the 1992 running period of the LEP e + e − collider, the DELPHI experiment accumulated approximately 24 pb − of data at the Z 0 peak. The decays into hadrons and charged leptons have been analysed to give values for the cross sections and leptonic forward-backward asymmetries which are significantly improved with respect to those previously published by the DELPHI collaboration. Incorporating these new data, more precise values for the Z 0 resonance parameters are obtained from model-independent fits. The results are interpreted within the framework of the Standard Model, yielding for the top quark mass m t = 157 −48 +36 (expt.) −20 +19 (Higgs) GeV, and for the effective mixing angle sin 2 θ eff lept = 0.2328 ± 0.0013 (expt.) −0.0003 +0.0001 (Higgs), where (Higgs) represents the variation due to Higgs boson mass in the range 60 to 1000 GeV, with central value 300 GeV.
No description provided.
First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only. An acollinearity less that 10 deg.
Forward-backward asymmetry within the polar angular range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only.
We present a measurement of the ratio σB(W→eν)σB(Z0→e+e−) in p¯p collisions at s=1.8 TeV The data represent an integrated luminosity of 21.7 pb−1 from the 1992-1993 run of the Collider Detector at Fermilab. We find σB(W→eν)σB(Z0→e+e−)=10.90±0.32(stat)±0.29(syst). From this value, we extract a value for the W width, Γ(W)=2.064±0.061(stat)±0.059(syst) GeV, and the branching ratio, Γ(W→eν)Γ(W)=0.1094±0.0033(stat)±0.0031(syst), and we set a decay-mode-independent limit on the top quark mass mtop>62 GeV/c2 at the 95% C.L.
No description provided.
A measurement of ΔσL(np), the difference between neutron-proton total cross sections for pure longitudinal spin states, is described. Data were taken at LAMPF for five neutron beam kinetic energies: 484, 568, 634, 720, and 788 MeV. The statistical errors are in the range of 0.64–1.35 mb. Various sources of systematic effects were investigated and are described. Overall systematic errors are estimated to be on the order of 0.5 mb and include an estimate for the uncertainty in the neutron beam polarization. The ΔσL results are consistent with previous results from PSI and Saclay. These data, when combined with other results and fitted to a Breit-Wigner curve, are consistent with an elastic I=0 resonance with mass 2214±15 (stat) ±6 (syst) MeV and width 75±21±12 MeV. Because of a lack of ΔσT(np) data between 500 and 800 MeV, it is not possible to differentiate between a singlet or coupled-triplet partial wave being responsible.
No description provided.
The (I=0) part of SIG(NAME=CLL) after subtraction of the p p data, (I=1) part.
The reactions γp→K+ Λ and γp→K+ Σ0 have been measured with the multiparticle detector system SAPHIR at ELSA in Bonn. Besides the differential cross sections the Λ polarization and, for the first time, the Σ0 polarization have been determined in a photon induced reaction. All data are presented as functions of the photon energy (from threshold up to 1.47 GeV) and of the kaon production angle (0°–180°). The polarization of both Λ and Σ0 is substantial at all energies and varies strongly with the production angle.
Differential cross sections.
Total cross sections.
Differential cross sections.
The spin correlation parameter A00NN for 497.5 MeV proton + proton elastic scattering was determined over the center-of-momentum scattering angle region 23.1°–64.9 °. The new A00NN extend to more forward angles than existing A00NN and have significantly smaller statistical errors (±0.01–0.04). The A00NN are qualitatively described by recent phase shift analyses, but a quantitative shape and normalization discrepancy remains in the forward angle region. These new data provide important constraints for nucleon-nucleon spin-dependent amplitudes at forward angles which are used in theoretical models of nucleon-nucleus scattering.
Errors include statistical and systematic uncertainties.
Recently, highly relativistic Au beams have become available at the Brookhaven National Laboratory, Alternating Gradient Synchrotron. Inclusive production cross sections for composite particles, d, t, He3, and He4, in 11.5A GeV/c Au+Pt collisions have been measured using a beam line spectrometer. For comparison, composite particle production was also measured in Si+Pt and p+Pt collisions at similar beam momenta per nucleon (14.6A GeV/c and 12.9 GeV/c, respectively). The projectile dependence of the production cross section for each composite particle has been fitted to Aprojα. The parameter α can be described by a single function of the mass number and the momentum per nucleon of the produced particle. Additionally, the data are well described by momentum-space coalescence. Comparisons with similar analysis of Bevalac A+A data are made. The coalescence radii extracted from momentum-space coalescence fits are used to determine reaction volumes (‘‘source size’’) within the context of the Sato-Yazaki model.
No description provided.
No description provided.
No description provided.
The reaction p p → Λ Λ → p π + pπ − is studied in the experiment PS185 at the CERN Low Energy Antiproton Ring (LEAR). A precise measurement of the excitation function in the immediate threshold region below 6 MeV excess energy was achieved. The total cross section shows an unexpected behaviour around 1 MeV excess energy.
The values are calculated using M(p)=M(pbar) = 938.27231 Mev and M(lambda)=M(lambdabar) = 1115.63 MeV.
D(SIG)/D(OMEGA) as a function of COS(THETA(RF=CM)) for the nine intervals of the excess energy. Excess energy is SQRT(S)-M(lambda)-M(lambdabar).
The invariant double-differential cross section, E 1 E 2 d 6 σ / d p 3 1 d p 3 2 , and the double-spin asymmetry, A LL , for inclusive multi-γ pair production in which γ-rays came from neutral mesons were measured with a 200 GeV / c longitudinally-polarized proton beam and a longitudinally-polarized proton target. Most of the multi-γ pairs comes from two-jet type events which are sensitive to partonic interaction. The A LL values were found to be consistent with zero. The invariant double-differential cross section for inclusive π 0 π 0 production was also measured. These measured cross sections are consistent with LUND Monte Carlo simulations. Using the LUND Monte Carlo simulation package with the Carlitz-Kaur model of spin dependent distribution functions of valence quarks, the A LL values have been compared with theoretical predictions of gluon polarization, ΔG / G . The results put restrictions on the size of ΔG / G in the region of 0.05 ⪅ x ⪅ 0.35.
No description provided.
No description provided.
No description provided.
The φπ + /ωπ + ratio from n¯p annihilations on a liquid hydrogen target, for n¯ momenta between 64 and 297 MeV/ c , was measured using the OBELIX spectrometer at LEAR. The ratio R(ϕπ/ωπ)=σ(n¯p→ϕπ+)/σ(n¯p→ωπ+) turned out 0.110±0.015 stat ±0.006 syst . Implications of this result on the OZI rule are discussed.
Assumes branching ratios of (49.1 +- 0.8)% for phi --> K+ K- and (88.8 +- 0.6)% for omega --> pi+ pi- pi0.