We have observed decays of the ϒ(1S) into hadronic final states containing high-energy photons. These are interpreted as coming from the decay ϒ(1S)→γ+gluon+gluon. We compare the shape of the observed photon energy spectrum with several theoretical predictions and deduce the value of the strong-coupling constant αs and the QCD scale parameter ΛMS― (MS― denotes the modified minimal-subtraction scheme) associated with each prediction.
DATA TAKEN ON THE PEAK OF THE UPSI(9460).
DATA TAKEN ON THE PEAK OF THE UPSI(9460).
A new technique is applied to data collected at the ψ(3770) resonance to derive charmed-D-meson branching fractions without relying on the measurement of D-production cross sections. Measurements are presented for three decay modes of the D0 (K−π+, D−π−π+π+, and K−π+π0 and four decay modes of the D+ (K−π+π+,K−π+π+π0,KS0π+, and KS0π+π0). The resulting branching fractions are significantly larger than previous measurements.
No description provided.
No description provided.
The UA2 experiment, running at the CERN SPS\(\bar pp\) Collider, has performed a study of events containing three hard jets in the final state. The angular distributions of the three jets show evidence for gluon bremsstrahlung, in good agreement with a QCD model to leading order in the strong coupling constant αs. The yield of three-jet events relative to that of two-jet events provides a measure of the strong coupling constant: ;3K3/K2=0.23±0.01±0.04, whereK2 andK3 represent the contributions arising from higher order corrections in α3 to the two- and three-jet exclusive cross-sections. A detailed discussion of the systematic and theoretical uncertainties is given.
No description provided.
None
.
INTEGRATED D(SIG)/D(T).
OBTAINED FROM FIT D(SIG)/D(T)=A*EXP(B*T+C*T**2) IN 0.05 < -T < 0.3.
Topological cross sections and characteristics of charged particle multiplicity distributions for¯nn andnn interactions and¯nn annihilations at 6·1 GeV/c are presented. KNO-distributions for¯nn andnn interactions are very similar. Characteristics for¯nn and¯pp annihilations are identical at equal energies.
No description provided.
No description provided.
No description provided.
The vector analyzing power has been measured for π+d elastic scattering at 0.74 GeV/c in the angular range of thetac.m.=40?(de–105°, using a polarized deuteron target in a large aperture spectrometer. A comparison with calculations based on the Glauber model was made.
Data read from graph. Statistical errors only.
The properties of a sample of 172 charged intermediate vector bosons decaying in the (eνe) channel and 16 neutral intermediate vector bosons decaying in the (e+e-) channel are described. Masses, decay widths, decay angular distributions, and production cross-sections are given; they are shown to be in excellent agreement with the expectations of the SU2 ⊗ U1 standard model. A limit is put on the number of light-neutrino types Nν ≤ 10 at 90% c.l.
W CROSS SECTIONS ARE GIVEN IN ARNISON ET AL., NC 44A, 1.
No description provided.
The ratio of differential cross sections for the reactions e + e − → γγ and e + e − → e + e − is measured at s = 29 GeV in the central polar angle region, |cos θ | < 0.55, and compared to the same ratio calculated by QED to order α 3 . The ratio of these ratios, integrated over this angular region, is 1.007±0.009±0.008, demonstrating excellent agreement between theory and experiment. The 95% confidence limits on the QED cut-off parameters for the γγ final state are Λ + > 59 GeV and Λ - > 59 GeV.
No description provided.
Results are reported on a high statistics study of Bhabha scattering at 29 GeV in the polar angle region, |cos θ | < 0.55. The data are consistent with the standard model, and measure vector and axial-vector coupling constants of g v 2 = 0.03 ± 0.09 and g a 2 = 0.46±0.14. Limits on the QED-cutoff parameters are Λ + > 154 GeV and Λ - > 220 GeV. Lower limits on scale parameters of composite models are in the range 0.9–2.8 TeV. The partial width of a hypothetical spin-zero boson decaying to e + e − has an upper limit which varies from 6 to 57 MeV corresponding to a boson mass in the range 45–80 GeV/ c 2 .
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.