Inclusive production of ifπ ± , K ± and p has been studied near charm threshold for c.m. energies between 3.6 and 5.2 GeV. Differential and scaling cross sections together with particle multiplicities have been determinated. By comparing data below and above charm threshold the charm contribution to if π ± and K ± production has been extracted. A comparison has been made between inclusice p production and inelastic electron-proton scattering. To study differences between three-gluon annihilation and two-quark production of the spectra from J/ decay and from non-resonant production at 3.6 GeV has been compared.
No description provided.
No description provided.
No description provided.
The magnetic moment of the Λ0 hyperon has been measured to be μΛ=(−0.6138±0.0047)μN.
No description provided.
None
No description provided.
The s and t dependence of φ (1019) photoproduction has been investigated in the incident photon energy range 2.8 to to 4.8 GeV. Differential cross-sections and density matrix elements are presented for a t range extending from t min out to −1.3 (GeV/ c ) 2 . The results are discussed in terms discussed in terms of an effective Regge trajectory in the t -channel.
DIFFERENTIAL CROSS SECTIONS AVERAGED OVER TWO RANGES OF INCIDENT PHOTON ENERGY.
VARIATION OF SMALL -T DIFFERENTIAL CROSS SECTION WITH PHOTON ENERGY.
INTERCEPT AND SLOPE FROM FITS TO D(SIG)/DT AT SMALL -T.
Neutral-pion production in pp interactions has been studied using 8000 photon conversions in the Fermilab 15-ft bubble chamber. Inclusive π0 multiplicity moments and ππ correlation integrals are presented; f200 is determined to be + 3.0±0.8. For the semi-inclusive π0 multiplicity distributions we find 〈n(π0)〉n− to increase with n−, while the dispersions are n− independent. Results on f2−0, f200, and f2,n−00 are compared to predictions of simple cluster models.
No description provided.
No description provided.
No description provided.
Proton-proton elastic scattering at 400 GeV/c has been measured in the region 5.4<−t<14.4 GeV2 with no sign of a second dip or "break." If the data are fitted by exp(At), the slope A decreases from 1.5±0.1 to 0.7±0.2 GeV−2 over the range. At fixed t the 400-GeV/c cross sections are about 0.6 times those at 200 GeV/c in this t range. At fixed θc.m.=15°, dσdt∝s−n where n=9.7±0.3.
No description provided.
No description provided.
The recoil proton polarization for γ n → π − p was measured around the third resonance region. Both momentum vectors of the proton and the pion were determined by the magnetic spectrometers. The proton polarization was measured by means of proton-carbon scattering in the polarization analyzer located behind the proton spectrometer. Below 900 MeV incident photon energy, our data are consistent with the other existing experimental data ( θ π ∗ = 90° ) and the predictions of partial-wave analyses. Above 1000 MeV, however, a large discrepancy was observed between our data and the predictions of the partial-wave analyses. The discrepancy stands out as the pion c.m. angle increases. A new partial-wave analysis was made for γ n → π − p including our polarization data, and the accuracy of the experimentally determined electromagnetic coupling constant of the third resonances were greatly improved. In particular, a finite amount of the helicity 3 2 amplitude for the γ n → F 15 (1688) resonance was obtained against the predictions of the quark models, by Copley, Karl and Obryk and by Feynman, Kislinger and Ravendal but in agreement with the relativistic quark models of Sugimoto and Toya, and Kubota and Ohta.
No description provided.
None
ERRORS INCLUDE BY QUADRATIC ADDITION THE 5 PCT UNCERTAINTY IN THE CARBON ANALYSING POWER.
We present results on the inclusive distributions of final-state hadrons created in deep-inelastic electron scattering from protons and deuterons. Data were taken from all portions of the kinematic range simultaneously in an apparatus which had equal detection efficiency for both charge signs. A subset of the produced hadrons were identified with a threshold-type Čerenkov counter. We find that the charge ratio h+h− is a strong function of Q2, xF, and pT2, with little dependence on s. The ratio of production of h− from deuterium to that from hydrogen as a function of φ is flat. The invariant cross section for each charge sign and each target exhibits the seagull effect (a correlation in 〈pT〉 and 〈xF〉). The value of 〈pT〉 for data in the range 0.4<xF<0.85 increases slightly as Q2 increases. The exponential dropoff in pT for production of protons and kaons is similar to that for pions. The dropoff in xF for production of pions shows a definite dependence on Q2, but this effect is largely caused by the decay products of the exclusive ρ0 final state. Finally, f(xF) for π+, π−, K+, K−, p, and p¯ is presented for each target type.
No description provided.
No description provided.
No description provided.
We have measured inclusive γ and π0 production in multiprong events produced by e+e− annihilation in the center-of-mass energy range 4.9 to 7.4 GeV. We find the π0 inclusive cross section to be consistent in shape and normalization with half the charged-π cross section between x=0.15 and 0.60, with an integrated inclusive cross-section ratio of σ(π0)|σ(π+)+σ(π−)|=0.47±0.10.
NUMERICAL VALUES OF DATA FROM THIS EXPERIMENT HAVE NOT BEEN KEPT (M. L. PERL, PRIV COMM, 3 MAY 1979).