Measurement of the virtual-photon asymmetry A2 and the spin-structure function g2 of the proton

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Eur.Phys.J.C 72 (2012) 1921, 2012.
Inspire Record 1082840 DOI 10.17182/hepdata.66230

A measurement of the virtual-photon asymmetry A_2(x,Q^2) and of the spin-structure function g_2(x,Q^2) of the proton are presented for the kinematic range 0.004 < x < 0.9 and 0.18 GeV^2 < Q^2 < 20 GeV^2. The data were collected by the HERMES experiment at the HERA storage ring at DESY while studying inclusive deep-inelastic scattering of 27.6 GeV longitudinally polarized leptons off a transversely polarized hydrogen gas target. The results are consistent with previous experimental data from CERN and SLAC. For the x-range covered, the measured integral of g_2(x) converges to the null result of the Burkhardt-Cottingham sum rule. The x^2 moment of the twist-3 contribution to g_2(x) is found to be compatible with zero.

4 data tables

The spin-structure function $xg_2(x,Q^2)$ and virtual-photon asymmetry $A_2(x,Q^2)$ of the proton in bins of $(x,Q^2)$, see text for details. Statistical and systematic uncertainties are presented separately.

The spin-structure function $xg_2$ and the virtual-photon asymmetry $A_2$ of the proton after evolving to common $Q^2$ and averaging over in each $x$-bin (see text for details). Statistical and systematic uncertainties are presented separately.

Correlation matrix for $xg_2$ in 9 $x$-bins (as in Table 2).

More…

Inclusive Measurements of Inelastic Electron and Positron Scattering from Unpolarized Hydrogen and Deuterium Targets

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
JHEP 05 (2011) 126, 2011.
Inspire Record 894309 DOI 10.17182/hepdata.66147

Results of inclusive measurements of inelastic electron and positron scattering from unpolarized protons and deuterons at the HERMES experiment are presented. The structure functions $F_2^p$ and $F_2^d$ are determined using a parameterization of existing data for the longitudinal-to-transverse virtual-photon absorption cross-section ratio. The HERMES results provide data in the ranges $0.006\leq x\leq 0.9$ and 0.1 GeV$^2\leq Q^2\leq$ 20 GeV$^2$, covering the transition region between the perturbative and the non-perturbative regimes of QCD in a so-far largely unexplored kinematic region. They are in agreement with existing world data in the region of overlap. The measured cross sections are used, in combination with data from other experiments, to perform fits to the photon-nucleon cross section using the functional form of the ALLM model. The deuteron-to-proton cross-section ratio is also determined.

3 data tables

Results on the differential Born cross section $\frac{d^2\sigma^p}{dx\,dQ^2}$ and $F_2^p$. The statistical uncertainty $\delta_{stat.}$ and the systematic uncertainties $\delta_{PID}$ (particle identification), $\delta_{model}$ (model dependence outside the acceptance), $\delta_{mis.}$ (misalignment), and $\delta_{rad.}$ (Bethe-Heitler efficiencies) are given in percent. Corresponding $x$ bin numbers and $Q^2$ bin numbers and the average values $\langle x \rangle$ and $\langle {Q^2} \rangle$ are listed in the first four columns. The overall normalization uncertainty is 7.6 %. The structure function $F_2^p$ is derived using the parameterization $R=R_{1998}$.

Results on the differential Born cross section $\frac{d^2\sigma^d}{dx\,dQ^2}$ and $F_2^d$. The statistical uncertainty $\delta_{stat.}$ and the systematic uncertainties $\delta_{PID}$ (particle identification), $\delta_{model}$ (model dependence outside the acceptance), $\delta_{mis.}$ (misalignment), and $\delta_{rad.}$ (Bethe-Heitler efficiencies), are given in percent. Corresponding $x$ bin numbers and $Q^2$ bin numbers and the average values $\langle x \rangle$ and $\langle{Q^2}\rangle$ are listed in the first four columns. The overall normalization uncertainty is 7.5 %. The structure function $F_2^d$ is derived using the parameterization $R=R_{1998}$.

Results on the inelastic Born cross-section ratio ${\sigma^d}/{\sigma^p}$. The statistical uncertainty $\delta_{stat.}$, the systematic uncertainty $\delta_{rad.}$ due to radiative corrections and $\delta_{model}$ due to the model dependence outside the acceptance are given in percent. The average values of $x$ and $Q^2$ are listed in the first two columns. The overall normalization uncertainty is 1.4$\%$.


Combined Measurement and QCD Analysis of the Inclusive ep Scattering Cross Sections at HERA

The H1 & ZEUS collaborations Aaron, F.D. ; Abramowicz, H. ; Abt, I. ; et al.
JHEP 01 (2010) 109, 2010.
Inspire Record 836107 DOI 10.17182/hepdata.58304

A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised ep scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q^2, and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions HERAPDF1.0 with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result.

89 data tables

Combined reduced cross section data and F2 for Neutral Current E+ P scattering at Q**2=0.045 GeV**2.

Combined reduced cross section data and F2 for Neutral Current E+ P scattering at Q**2=0.065 GeV**2.

Combined reduced cross section data and F2 for Neutral Current E+ P scattering at Q**2=0.085 GeV**2.

More…

Measurement of neutral current cross sections at high Bjorken-x with the ZEUS detector at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 49 (2007) 523-544, 2007.
Inspire Record 723329 DOI 10.17182/hepdata.11718

A new method is employed to measure the neutral current cross section up to Bjorken-x values of one with the ZEUS detector at HERA using an integrated luminosity of 65.1 pb-1 for e+p collisions and 16.7 pb-1 for e-p collisions at sqrt{s}=318 GeV and 38.6 pb-1 for e+p collisions at sqrt{s}=300 GeV. Cross sections have been extracted for Q2 >= 648 GeV2 and are compared to predictions using different parton density functions. For the highest x bins, the data have a tendency to lie above the expectations using recent parton density function parametrizations.

114 data tables

The double differential cross section for the 96-97 E+ P NC scattering data.

The double differential cross section for the 96-97 E+ P NC scattering data.

The double differential cross section for the 96-97 E+ P NC scattering data.

More…

Study of deep inelastic inclusive and diffractive scattering with the ZEUS forward plug calorimeter.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 713 (2005) 3-80, 2005.
Inspire Record 675372 DOI 10.17182/hepdata.11816

Deep inelastic scattering and its diffractive component, ep -> e'gamma*p ->e'XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 4.2 pb-1. The measurement covers a wide range in the gamma*p c.m. energy W (37 - 245 GeV), photon virtuality Q2 (2.2 - 80 GeV2) and mass Mx. The diffractive cross section for Mx > 2 GeV rises strongly with W: the rise is steeper with increasing Q2. The latter observation excludes the description of diffractive deep inelastic scattering in terms of the exchange of a single Pomeron. The ratio of diffractive to total cross section is constant as a function of W, in contradiction to the expectation of Regge phenomenology combined with a naive extension of the optical theorem to gamma*p scattering. Above Mx of 8 GeV, the ratio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross section. The data are also presented in terms of the diffractive structure function, F2D(3)(beta,xpom,Q2), of the proton. For fixed beta, the Q2 dependence of xpom F2D(3) changes with xpom in violation of Regge factorisation. For fixed xpom, xpom F2D(3) rises as beta -> 0, the rise accelerating with increasing Q2. These positive scaling violations suggest substantial contributions of perturbative effects in the diffractive DIS cross section.

135 data tables

Measurement of the proton structure function F2 at Q**2 = 2.7 GeV**2.

Measurement of the proton structure function F2 at Q**2 = 4.0 GeV**2.

Measurement of the proton structure function F2 at Q**2 = 6.0 GeV**2.

More…

Measurement of high-Q**2 e- p neutral current cross sections at HERA and the extraction of xF3.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Eur.Phys.J.C 28 (2003) 175-201, 2003.
Inspire Record 593481 DOI 10.17182/hepdata.46560

Cross sections for e^-p neutral current deep inelastic scattering have been measured at a centre-of-mass energy of 318 GeV using an integrated luminosity of 15.9 pb^-1 collected with the ZEUS detector at HERA. Results on the double-differential cross-section d^2s/dxdQ^2 in the range 185 < Q^2 < 50000 GeV^2 and 0.0037 < x < 0.75, as well as the single-differential cross-sections ds/dQ^2, ds/dx and ds/dy for Q^2 > 200 GeV^2, are presented. To study the effect of Z-boson exchange, ds/dx has also been measured for Q^2 > 10000 GeV^2. The structure function xF_3 has been extracted by combining the e^-p results presented here with the recent ZEUS measurements of e^+p neutral current deep inelastic scattering. All results agree well with the predictions of the Standard Model.

32 data tables

Differential cross section DSIG/DQ**2.

Differential cross section DSIG/DX for two Q**2 regions.

Differential cross section DSIG/DY.

More…

Measurement of charged and neutral current e- p deep inelastic scattering cross-sections at high Q**2

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Rev.Lett. 75 (1995) 1006-1011, 1995.
Inspire Record 393918 DOI 10.17182/hepdata.45004

Deep inelastic $e~-p$ scattering has been studied in both the charged-current (CC) and neutral-current (NC) reactions at momentum transfers squared, $Q~2$, between 400 GeV$~2$ and the kinematic limit of 87500 GeV$~2$ using the ZEUS detector at the HERA $ep$ collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections, $ d\sigma/dQ~2 $, are presented. For $Q~2 \simeq M_W~2$, where $M_W$ is the mass of the $W$ boson, the CC and NC cross sections have comparable magnitudes, demonstrating the equal strengths of the weak and electromagnetic interactions at high $Q~2$. The $Q~2$ dependence of the CC cross section determines the mass term in the CC propagator to be $M_{W} = 76 \pm 16 \pm 13$GeV.

4 data tables

Data requested from authors.

Neutral current cross sections.

Charged current cross sections.

More…

Extraction of the gluon density of the proton at small x

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 345 (1995) 576-588, 1995.
Inspire Record 379633 DOI 10.17182/hepdata.45038

The gluon momentum density xg ( x , Q 2 ) of the proton was extracted at Q 2 = 20 GeV 2 for small values of x between 4 × 10 −4 and 10 −2 from the scaling violations of the proton structure function F 2 measured recently by ZEUS in deep inelastic neutral current ep scattering at HERA. The extraction was performed in two ways. Firstly, using a global NLO fit to the ZEUS data on F 2 at low x constrained by measurementsfrom NMC at larger x ; and secondly using published approximate methods for the solution of the GLAP QCD evolution equations. Consistent results are obtained. A substantial increase of the gluon density is found at small x in comparison with the NMC result obtained at larger values of x .

2 data tables

Values of F2 and slope of F2 obtained from fits to the ZEUS paper used in the extraction of the gluon momentum distributions.

Gluon momenta distribution at Q**2 = 20.


Measurement of the proton structure function F2 from the 1993 HERA data

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 65 (1995) 379-398, 1995.
Inspire Record 375999 DOI 10.17182/hepdata.45104

The ZEUS detector has been used to measure the proton structure functionF2. During 1993 HERA collided 26.7 GeV electrons on 820 GeV protons. The data sample corresponds to an integrated luminosity of 0.54 pb−1, representing a twenty fold increase in statistics compared to that of 1992. Results are presented for 7<Q2<104 GeV2 andx values as low as 3×10−4. The rapid rise inF2 asx decreases observed previously is now studied in greater detail and persists forQ2 values up to 500 GeV2.

13 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the proton structure function F2 in e p scattering at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 316 (1993) 412-426, 1993.
Inspire Record 357414 DOI 10.17182/hepdata.28804

This paper presents our first measurement of the F 2 structure function in neutral-current, deep inelastic scattering using the ZEUS detector at HERA, the ep colliding beam facility at DESY. The data correspond to an integrated luminosity of 24.7 nb −1 . Results are presented for data in range of Q 2 from 10 GeV 2 to 4700 GeV 2 and Bjorken x down to 3.0 × 10 −4 . The F 2 structure function increases rapidly as x decreases.

7 data tables

No description provided.

No description provided.

No description provided.

More…