Real to Imaginary Ratio of the $\bar{p} p$ Forward Elastic Scattering Amplitude at 550-{MeV}/$c$, 757-{MeV}/$c$ and 1077-{MeV}/$c$

Schiavon, P. ; Birsa, R. ; Bos, K. ; et al.
Nucl.Phys.A 505 (1989) 595-609, 1989.
Inspire Record 277295 DOI 10.17182/hepdata.36894

The ratio of the real to the imaginary part of the pp forward elastic-scattering amplitude ϱ has been measured at 550, 757, and 1077 MeV/ c at LEAR, using the Coulomb-nuclear interference method. The results obtained for ρ and b , the nuclear slope, are ϱ = 0.084 ± 0.051 and b = 20.9 ± 2.1 (GeV/ c ) −2 at 550 MeV/ c , ϱ = 0.102 ± 0.043 and b = 18.0 ± 0.5 (GeV/ c ) −2 = at 757 MeV/ c , and ϱ = 0.059 ± 0.035 and b = 15.2 ± 0.3 (GeV/ c ) −2 at 1077 MeV/ c .

4 data tables

Error on SLOPE is statistical only.

Measured differential cross sections corrected for small-angle trigger efficiency and absorption losses. Statistical errors only.

Measured differential cross sections corrected for small-angle trigger efficiency and absorption losses. Statistical errors only.

More…

Measurement of $d \sigma / d \Omega$ and A(on) in $\bar{p} p$ Elastic Scattering Between 497-{MeV}/$c$ and 1550-{MeV}/$c$

Kunne, R.A. ; Beard, C.I. ; Birsa, R. ; et al.
Nucl.Phys.B 323 (1989) 1-36, 1989.
Inspire Record 267175 DOI 10.17182/hepdata.48676

Measurements have been made of the differential cross section and asymmetry A on for p p elastic scattering at 15 incident momenta between 497 MeV/ c and 1550 MeV/ c . The angular range where both particles have enough energy to traverse target and setup has been covered. The results are compared with predictions of various N N potential models. None of these models fully explains the present results, although the general trend of the data is predicted correctly.

16 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of Anti-proton - Proton Small Angle Elastic Scattering at Low Momentum

Linssen, L. ; Beard, C.I. ; Birsa, R. ; et al.
Nucl.Phys.A 469 (1987) 726, 1987.
Inspire Record 245092 DOI 10.17182/hepdata.37014

Two high statistics measurements of antiproton-proton small-angle elastic scattering, at p = 233 MeV/ c and p = 272 MeV/ c , are presented. The measurements were carried out at the LEAR facility at CERN. By the Coulomb-nuclear interference method, values are obtained for the real-to-imaginary ratio ρ of the p̄p forward nuclear scattering amplitude and for its exponential slope b : ρ = + 0.041 ± 0.026 and b = 71.5 ± 4.5 (GeV/ c ) −2 at 233 MeV/ c and ρ = −0.014 ± 0.027 and b = 47.7 ± 2.7 (GeV/ c ) −2 at 272 MeV/ c . The method to derive these values is discussed in detail and so are the uncertainties contributing to their systematic error. The results are compared with predictions from forward dispersion relation calculations and with predictions from p̄p potential models.

3 data tables

The corrected cross section is the measured divided by the average folding correction given in the paper.

The corrected cross section is the measured divided by the average folding Correction given in the paper.

Fits to data use the value of total cross sections of 263 & 296 mb for 272 & 233 Mev respectively derived from the authors total cross sections measurement. ETA is the spin dependence parameter.


MEASUREMENT OF THE REAL TO IMAGINARY RATIO OF THE ANTI-P P FORWARD SCATTERING AMPLITUDES

Ashford, V. ; Sainio, M.E. ; Sakitt, M. ; et al.
Phys.Rev.Lett. 54 (1985) 518-521, 1985.
Inspire Record 216074 DOI 10.17182/hepdata.20329

We have measured the ratio of the real to the imaginary parts of the p¯p forward-scattering amplitude in the incident-momentum range 360 to 650 MeV/c. These results are in good agreement with predictions of the Paris nucleon-antinucleon potential model which include spin-flip effects.

3 data tables

RESULTS OF FITS TO THE FORWARD-SCATTERING DIFFERENTIAL CROSS SECTIONS ASSUMING THE RATIO OF THE SPIN-FLIP TO NON-SPIN-FLIP PARTS OF THE FORWARD AMPLITUDE IS ZERO.

RESULTS OF FITS TO THE FORWARD-SCATTERING DIFFERENTIAL CROSS SECTIONS ASSUMING THE RATIO OF THE SPIN-FLIP TO NON-SPIN-FLIP PARTS OF THE FORWARD AMPLITUDE IS PARAMATERISED AS 0.3698-0.1384*PLAB(IN GEV).


The Real Part of anti-p p Forward Elastic Scattering Amplitude at 0.7-GeV/c

Kaseno, H. ; Hamatsu, R. ; Kawano, K. ; et al.
Phys.Lett.B 61 (1976) 203-206, 1976.
Inspire Record 3400 DOI 10.17182/hepdata.27693

The differential cross sections of p p elastic scattering at 0.7 GeV/ c were obtained in the range 0.0018<| t |⩽0.0320 GeV 2 . From the interference between the Coulomb and the nuclear amplitude, the ratio of real to imaginary part of the forward nuclear amplitude was found to be +0.33±0.04.

3 data tables

No description provided.

No description provided.

FIT FOR FORWARD NUCLEAR AMPLITUDE IN COULOMB INTERFERENCE REGION.


K0(L) p ---> K0(S) p SCATTERING FROM 1-GeV/c TO 10-GeV/c

Brandenburg, G.W. ; Johnson, William B. ; Leith, David W.G.S. ; et al.
Phys.Rev.D 9 (1974) 1939, 1974.
Inspire Record 81133 DOI 10.17182/hepdata.21986

The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.

22 data tables

No description provided.

No description provided.

No description provided.

More…