Date

Evidence for deconfinement of quarks and gluons from the J/psi suppression pattern measured in Pb Pb collisions at the CERN-SPS.

The NA50 collaboration Abreu, M.C. ; Alessandro, B. ; Alexa, C. ; et al.
Phys.Lett.B 477 (2000) 28-36, 2000.
Inspire Record 524685 DOI 10.17182/hepdata.57430

The analysis of the data collected by the NA50 experiment in 1998, reported in this paper, extends and clarifies the pattern of the previously observed J/ ψ anomalous suppression. This new measurement, besides providing a deeper understanding of the previous observations, reveals a steady significative decrease in the J/ ψ production rate up to the most central Pb-Pb collisions. It clearly rules out the presently available conventional (hadronic) models of J/ ψ suppression, which unanimously predict a saturation of the J/ ψ rate for central Pb-Pb collisions. On the contrary and together with the sharp onset of the anomalous suppression previously reported, the new observation leads to a global production rate pattern which finds its natural explanation in the framework of the formation of a deconfined state of quarks and gluons.

3 data tables

SIG(J/PSI)/SIG(DY) as a function of ET with the standard analyses of 1996. DATA 1996, standard analyses.

SIG(J/PSI)/SIG(DY) as a function of ET with the minium bias analyses of 1996. DATA 1996, MB Analyses.

SIG(J/PSI)/SIG(DY) as a function of E(NAME=TRANSVERSE) with the minium bias analyses of 1998. DATA 1998, MB Analyses.


Dimuon and charm production in nucleus nucleus collisions at the CERN-SPS.

The NA38 & NA50 collaborations Abreu, M.C. ; Alessandro, B. ; Alexa, C. ; et al.
Eur.Phys.J.C 14 (2000) 443-455, 2000.
Inspire Record 524686 DOI 10.17182/hepdata.57421

Muon pair production in p-A, S-U and Pb-Pb collisions has been studied by the NA38 and NA50 collaborations at the CERN SPS. In this paper we present an analysis of the dimuon invariant mass region bet

1 data table

CHARM-CHARMBAR cross section Need to divide by 2 to consider only the XF>0 hemisphere.


Consistent measurements of alpha(s) from precise oriented event shape distributions.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 14 (2000) 557-584, 2000.
Inspire Record 522656 DOI 10.17182/hepdata.13245

An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energy fraction, the observable with the smallest theoretical and experimental uncertainty, is $\alpha_s(M_Z^2) = 0.1180 \pm 0.0006 (exp.) \pm 0.0013 (hadr.) \pm 0.0008 (scale) \pm 0.0007 (mass)$. Further studies include an $\alpha_s$ determination using theoretical predictions in the next-to-leading log approximation (NLLA), matched NLLA and $\cal O(\alpha_s^2$) predictions as well as theoretically motivated optimized scale setting methods. The influence of higher order contributions was also investigated by using the method of Pad\'{e} approximants. Average $\alpha_s$ values derived from the different approaches are in good agreement.

33 data tables

The weighted value of ALPHA-S from all the measured observables using experimentally optimized renormalization scale values and corrected for the b-mass toleading order.

The value of ALPHA-S derived from the JCEF and corrected for heavy quark mass effects. The quoted errors are respectively due to experimental error, hadronization, renormalization scale and heavy quark mass correction uncertainties.

Energy Energy Correlation EEC.

More…

Search for double-Lambda hypernuclei and the H dibaryon in the (K-,K+) reaction on C-12.

The E885 collaboration Yamamoto, K. ; Alburger, D.E. ; Barnes, P.D. ; et al.
Phys.Lett.B 478 (2000) 401-407, 2000.
Inspire Record 528779 DOI 10.17182/hepdata.28030

A search for double- Λ hypernuclei ( 12 ΛΛ Be) and H -dibaryons using the 12 C( K − , K + ) reaction was performed at the BNL-AGS using a high-intensity 1.8 GeV/ c K − beam. A missing-mass analysis below the end point of the quasi-free Ξ − production was used to investigate these S =−2 systems. The upper limit obtained for the forward-angle cross section of 12 ΛΛ Be production is 6 to 10 nb/sr. This is the first search for the direct production of double- Λ hypernuclei to reach the sensitivity required to observe the signal predicted by theoretical calculations. For the H -production cross section, we have obtained an upper limit in the range of a few nb/sr to 10 nb/sr for the H mass below 2100 MeV/ c 2 . This upper limit is the most sensitive H search result to date for a tightly bound H .

2 data tables

Upper limit is given.

The production of the H-dibaryon could occur via the (K-, K+) reaction on two protons in a nucleus: K- (PP) --> K+ H-dibaryon. Upper limit is given.


Angular dependence of the p p elastic scattering spin correlation parameter A(00nn) between 0.8 and 2.8 GeV: Results for 1.80-GeV to 2.24-GeV

Allgower, C.E. ; Ball, J. ; Barabash, L.S. ; et al.
Phys.Rev.C 62 (2000) 064001, 2000.
Inspire Record 539075 DOI 10.17182/hepdata.25464

Measurements at 19 beam kinetic energies between 1795 and 2235 MeV are reported for the pp elastic scattering spin correlation parameter A00nn=ANN=CNN. The c.m. angular range is typically 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters. These results are compared to previous data from Saturne II and elsewhere.

21 data tables

Measured values of CNN at EKIN 1795 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.110.

Measured values of CNN at EKIN 1845 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.073.

Measured values of CNN at EKIN 1935 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.095.

More…

Reaction mechanisms and multifragmentation processes in Zn-64 + Ni-58 at 35A-MeV to 79A-MeV

Wada, R. ; Hagel, K. ; Cibor, J. ; et al.
Phys.Rev.C 62 (2000) 034601, 2000.
Inspire Record 530848 DOI 10.17182/hepdata.25430

Reaction mechanisms and multifragmentation processes have been studied for 64Zn+58Ni collisions at intermediate energies with the help of antisymmetrized molecular dynamics (AMD-V) model calculations. Experimental energy spectra, angular distributions, charge distributions, and isotope distributions, classified by their associated charged particle multiplicities, are compared with the results of the AMD-V calculations. In general the experimental results are reasonably well reproduced by the calculations. The multifragmentation observed experimentally at all incident energies is also reproduced by the AMD-V calculations. A detailed study of AMD-V events reveals that, in nucleon transport, the reaction shows some transparency, whereas in energy transport the reaction is much less transparent at all incident energies studied here. The transparency in the nucleon transport indicates that, even for central collisions, about 75% of the projectile nucleons appear in the forward direction. In energy transport about 80% of the initial kinetic energy of the projectile in the center- of-mass frame is dissipated. The detailed study of AMD-V events also elucidates the dynamics of the multifragmentation process. The study suggests that, at 35A MeV, the semitransparency and thermal expansion are the dominant mechanisms for the multifragmentation process, whereas at 49A MeV and higher incident energies a nuclear compression occurs at an early stage of the reaction and plays an important role in the multifragmentation process in addition to that of the thermal expansion and the semitransparency.

2 data tables

No description provided.

Average summed transverse momentum.


Photon Events with Missing Energy at sqrt(s) = 183 to 189 GeV

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 17 (2000) 53-65, 2000.
Inspire Record 537913 DOI 10.17182/hepdata.32093

The production of single photons has been studied in the reaction e+e- -> gamma + invisible particles at centre-of-mass energies of 183 GeV and 189 GeV. A previously published analysis of events with multi-photon final states accompanied by missing energy has been updated with 189 GeV data. The data were collected with the DELPHI detector and correspond to integrated luminosities of about 51 pb^{-1} and 158 pb^{-1} at the two energies. The number of light neutrino families is measured to be 2.84 +/- 0.15(stat) +/- 0.14(syst). The absence of an excess of events beyond that expected from Standard Model processes is used to set limits on new physics as described by supersymmetric and composite models. A limit on the gravitational scale is also determined.

2 data tables

No description provided.

Combined result.


A kinematically complete measurement of K+ --> pi+ pi0 pi0 decays.

The KEK PS E246 collaboration Shin, Y.H. ; Abe, M. ; Aoki, M. ; et al.
Eur.Phys.J.C 12 (2000) 627-631, 2000.
Inspire Record 526005 DOI 10.17182/hepdata.24453

None

1 data table

The Dalitz plot parameters G, H, and K are used in the standard parameterization of the matrix element squared (see PDG): M**2 = 1 + G*X + H*X**2 + K*Y**2,where X = (s3-s0)/m(PI)**2 and Y = (s1-s2)/m(PI)**2, s1 = (pK - pPI0)**2, s2 = (pK - pPI0)**2, s3 = (pK - pPI+)**2, s0 = (s1+s2+s3)/3.


Near-threshold eta production in the p d --> p d eta reaction.

Hibou, F. ; Wilkin, Colin ; Bergdolt, A.M. ; et al.
Eur.Phys.J.A 7 (2000) 537-541, 2000.
Inspire Record 523315 DOI 10.17182/hepdata.43410

The total cross section of the p d -> p d eta reaction has been measured at two energies near threshold by detecting the final proton and deuteron in a magneti spectrometer. The values are somewhat larger than expected on the basis of two simple theoretical estimates.

1 data table

The first quoted error includes statistical and normalization uncertainties, the scond is that induced by the uncertainty in the excess energy.


Identified Charged Particles in Quark and Gluon Jets

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 17 (2000) 207-222, 2000.
Inspire Record 524696 DOI 10.17182/hepdata.50064

A sample of 2.2 million hadronic Z decays, selected from the data recorded by the Delphi detector at LEP during 1994-1995 was used for an improved measurement of inclusive distributions of pi+, K+ and p and their antiparticles in gluon and quark jets. The production spectra of the individual identified particles were found to be softer in gluon jets compared to quark jets, with a higher multiplicity in gluon jets as observed for inclusive charged particles. A significant proton enhancement in gluon jets is observed indicating that baryon production proceeds directly from colour objects. The maxima, xi^*, of the xi-distributions for kaons in gluon and quark jets are observed to be different.

11 data tables

Jet flavor tagging is used. (C=DUSCB), (C=DUSC), (C=UDS) mean quark-jet flavors. CONST(C=GLUON/JET) is the ratio gluon/jet for all charged particles. 'Y' events, mirror symmetric events, the angle between the most energetic jet and other two jets is 150 +- 15 deg.

Jet flavor tagging is used. (C=DUSCB), (C=DUSC), (C=UDS) mean quark-jet flavors. CONST(C=GLUON/JET) is the ratio gluon/jet for all charged particles. 'Y' events, mirror symmetric events, the angle between the most energetic jet and other two jets is 150 +- 15 deg.

Jet flavor tagging is used. (C=DUSCB), (C=DUSC), (C=UDS) mean quark-jet flavors. CONST(C=GLUON/JET) is the ratio gluon/jet for all charged particles. 'Y' events, mirror symmetric events, the angle between the most energetic jet and other two jets is 150 +- 15 deg.

More…