Date

Version 2
Probing dense baryon-rich matter with virtual photons

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Nature Phys. 15 (2019) 1040-1045, 2019.
Inspire Record 1758156 DOI 10.17182/hepdata.90846

About 10 μs after the Big Bang, the universe was filled—in addition to photons and leptons—with strong-interaction matter consisting of quarks and gluons, which transitioned to hadrons at temperatures close to kT = 150 MeV and densities several times higher than those found in nuclei. This quantum chromodynamics (QCD) matter can be created in the laboratory as a transient state by colliding heavy ions at relativistic energies. The different phases in which QCD matter may exist depend for example on temperature, pressure or baryochemical potential, and can be probed by studying the emission of electromagnetic radiation. Electron–positron pairs emerge from the decay of virtual photons, which immediately decouple from the strong interaction, and thus provide information about the properties of QCD matter at various stages. Here, we report the observation of virtual photon emission from baryon-rich QCD matter. The spectral distribution of the electron–positron pairs is nearly exponential, providing evidence for a source of temperature in excess of 70 MeV with constituents whose properties have been modified, thus reflecting peculiarities of strong-interaction QCD matter. Its bulk properties are similar to the dense matter formed in the final state of a neutron star merger, as apparent from recent multimessenger observation.

10 data tables

Reconstructed $e^{+} e^{-}$ mass distribution from Au+Au collisions.

Reconstructed $e^{+} e^{-}$ mass distribution from Au+Au collisions.

Reconstructed $e^{+} e^{-}$ mass distribution from Au+Au collisions.

More…

Beam Asymmetry $\mathbf{\Sigma}$ for the Photoproduction of $\mathbf{\eta}$ and $\mathbf{\eta^{\prime}}$ Mesons at $\mathbf{E_{\gamma}=8.8}$GeV

The GlueX collaboration Adhikari, S. ; Ali, A. ; Amaryan, M. ; et al.
Phys.Rev.C 100 (2019) 052201, 2019.
Inspire Record 1749712 DOI 10.17182/hepdata.110166

We report on the measurement of the beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\rightarrow p\eta$ and $\vec{\gamma}p \rightarrow p\eta^{\prime}$ from the GlueX experiment, using an 8.2--8.8 GeV linearly polarized tagged photon beam incident on a liquid hydrogen target in Hall D at Jefferson Lab. These measurements are made as a function of momentum transfer $-t$, with significantly higher statistical precision than our earlier $\eta$ measurements, and are the first measurements of $\eta^{\prime}$ in this energy range. We compare the results to theoretical predictions based on $t$--channel quasi-particle exchange. We also compare the ratio of $\Sigma_{\eta}$ to $\Sigma_{\eta^{\prime}}$ to these models, as this ratio is predicted to be sensitive to the amount of $s\bar{s}$ exchange in the production. We find that photoproduction of both $\eta$ and $\eta^{\prime}$ is dominated by natural parity exchange with little dependence on $-t$.

3 data tables

Values and errors for the photon beam asymmetry $\Sigma_{\eta}$ for the reaction $\gamma p \rightarrow \eta p$ with $\eta\rightarrow\gamma\gamma$. For the binning in $t$, we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature. Not reported here is the $2.1\%$ relative uncertainty due to the determination of the polarization of the photon beam.

Values and errors for the photon beam asymmetry $\Sigma_{\eta\prime}$ for the reaction $\gamma p \rightarrow \eta^{\prime} p$ with $\eta^{\prime}\rightarrow \eta\pi^{+}\pi^{-}$ and the $\eta\rightarrow\gamma\gamma$. For the binning in $t$, we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta\prime}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature. Not reported here is the $2.1\%$ relative uncertainty due to the determination of the polarization of the photon beam.

Values and errors for the ratio of photon beam asymmetries $\Sigma_{\eta\prime}/\Sigma_{\eta}$ for the reported reactions. To form the ratio, the $\eta$ analysis is done with the same binning in $t$ as the $\eta^\prime$ analysis, and for each bin we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta\prime}/\Sigma_{\eta}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature.}


Version 2
Sub-threshold production of K$^{0}_{s}$ mesons and ${\Lambda}$ hyperons in Au(1.23A GeV)$+$Au

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Lett.B 793 (2019) 457-463, 2019.
Inspire Record 1709767 DOI 10.17182/hepdata.90954

We present first data on sub-threshold production of K0 s mesons and {\Lambda} hyperons in Au+Au collisions at $\sqrt{s_{NN}}$ = 2.4 GeV. We observe an universal <Apart> scaling of hadrons containing strangeness, independent of their corresponding production thresholds. Comparing the yields, their <Apart> scaling, and the shapes of the rapidity and the pt spectra to state-of-the-art transport model (UrQMD, HSD, IQMD) predictions, we find that none of the latter can simultaneously describe all observables with reasonable \c{hi}2 values.

18 data tables

Example of $K^{0}_{S}$ signal for 0-40% most central events, over mixed-event background for the bin $-0.05 < y_{cm} < 0.05$ and reduced transverse masses between $80-120 MeV/c^{2}$.

Example of $\Lambda$ signal for 0-40% most central events, over mixed-event background for the bin $-0.05 < y_{cm} < 0.05$ and reduced transverse masses between $100-150 MeV/c^{2}$.

Reduced transverse mass ($m_{t}-m_{0}$) spectra of $K^{0}_{S}$ for the 0-40% most central events. NOTE: The spectra are not scaled by $1/N_{Events}$! To compare the data, divide by $N_{Events} = 2.1997626 x 10^{9}$

More…

Precision Study of $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ Decay Dynamics

The BESIII collaboration Ablikim, M. ; Achasov, M. N. ; Ahmed, S. ; et al.
Phys.Rev.Lett. 120 (2018) 242003, 2018.
Inspire Record 1641075 DOI 10.17182/hepdata.89872

Using a low background data sample of $9.7\times10^{5}$ $J\psi\rightarrow\gamma\eta^\prime$, $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ events, which are 2 orders of magnitude larger than those from the previous experiments, recorded with the BESIII detector at BEPCII, the decay dynamics of $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ are studied with both model-dependent and model-independent approaches. The contributions of $\omega$ and the $\rho(770)-\omega$ interference are observed for the first time in the decays $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ in both approaches. Additionally, a contribution from the box anomaly or the $\rho(1450)$ resonance is required in the model-dependent approach, while the process specific part of the decay amplitude is determined in the model-independent approach.

1 data table

Numbers of events selected (Column 2), numbers of background events from sideband (Column 3), efficiencies (Column 4), and resolution RMS (Column 5) for different $M_{\pi^+\pi^-}$ bins.


Version 3
Deep sub-threshold {\phi} production and implications for the K+/K- freeze-out in Au+Au collisions

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Lett.B 778 (2018) 403-407, 2018.
Inspire Record 1519164 DOI 10.17182/hepdata.92099

We present data on charged kaons (K+-) and {\phi} mesons in Au(1.23A GeV)+Au collisions. It is the first simultaneous measurement of K and {\phi} mesons in central heavy-ion collisions below a kinetic beam energy of 10A GeV. The {\phi}/K- multiplicity ratio is found to be surprisingly high with a value of 0.52 +- 0.16 and shows no dependence on the centrality of the collision. Consequently, the different slopes of the K+ and K- transverse-mass spectra can be explained solely by feed- down, which substantially softens the spectra of K- mesons. Hence, in contrast to the commonly adapted argumentation in literature, the different slopes do not necessarily imply diverging freeze- out temperatures of K+ and K- mesons caused by different couplings to baryons.

13 data tables

Acceptance and efficiency corrected transverse-mass spectra around mid-rapidity.

$K^{+}$ signal and the corresponding background fit for the region covering mid-rapidity and $m_{t}−m_{0}$ between 25 and 50 $MeV/c^{2}$.

$K^{-}$ signal and the corresponding background fit for the region covering mid-rapidity and $m_{t}−m_{0}$ between 50 and 75 $MeV/c^{2}$.

More…

Measurement of the beam asymmetry $\Sigma$ for $\pi^0$ and $\eta$ photoproduction on the proton at $E_\gamma = 9$ GeV

The GlueX collaboration Al Ghoul, H. ; Anassontzis, E.G. ; Austregesilo, A. ; et al.
Phys.Rev.C 95 (2017) 042201, 2017.
Inspire Record 1511149 DOI 10.17182/hepdata.76745

We report measurements of the photon beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\to p\pi^0$ and $\vec{\gamma}p\to p\eta $ from the GlueX experiment using a 9 GeV linearly-polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous $\pi^0$ measurements and are the first $\eta$ measurements in this energy regime. The results are compared with theoretical predictions based on $t$-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.

2 data tables

Measurement of the beam asymmetry $\Sigma$ for $\pi^0$ photoproduction on the proton at $E_\gamma = 9$ GeV. The uncorrelated systematic errors (syst) are given in the table below along with a correlated normalization uncertainty (norm) of 3.6% due to the beam polarization.

Measurement of the beam asymmetry $\Sigma$ for $\eta$ photoproduction on the proton at $E_\gamma = 9$ GeV. The uncorrelated systematic errors (syst) are given in the table below along with a correlated normalization uncertainty (norm) of 3.6% due to the beam polarization.


Neutron-nucleon interactions in the GeV energy region

Palevsky, H. ; Friedes, J.L. ; Sutter, R.J. ; et al.
Conference Paper, 1964.
Inspire Record 1498651 DOI 10.17182/hepdata.75445

None

1 data table

'1'. '2'.


Pion production with polarized photons and test of vector dominance model

Geweniger, Chr. ; Heide, P. ; Kötz, U. ; et al.
Phys.Lett.B 28 (1968) 155-156, 1968.
Inspire Record 1392676 DOI 10.17182/hepdata.29098

Cross section asymmetries for the sum of single π + and π - production with polarized photons of 3.4 GeV have been measured. The results disagree with calculations based on the vector dominance model using experimental data of vector meson production in π beams.

1 data table

No description provided.


Resonance production and clustering effects in reactions $K^− p \to \Lambda^0$ + pions at an incident beam momentum 8.25 GeV/c

The Athens-Demokritos-Liverpool-Vienna collaboration Michaelidou, Ch. ; Kakoulidou, M. ; Michaelides, P. ; et al.
Nucl.Phys.B 140 (1978) 249-270, 1978.
Inspire Record 1392685 DOI 10.17182/hepdata.35024

We have estimated cross sections for the production of resonances in the reactions K − p → Λ 0 + pions. The data have also been analysed by a method which examines event-to-event fluctuations. Within the framework of the simple parametrization of resonance production assumed, the contribution from the resonances is insufficient to explain the observed fluctuations in the longitudinal emission of the final-state particles. These features are well reproduced by an independent cluster emission model.

1 data table

No description provided.


Photoproduction of $K^+$ mesons at 3.4 and 5.0 GeV

Joseph, P.M. ; Hicks, H. ; Litt, L. ; et al.
Phys.Lett.B 26 (1967) 41-44, 1967.
Inspire Record 1392746 DOI 10.17182/hepdata.29332

Measurements of the photoproduction from hydrogen of single K + mesons at gamma ray energies of 3.4 and 5.0 GeV and at laboratory angles of 5.1°, 7.1°, 9.9° and 15.1° are reported. The s dependence at fixed t is derived for momentum transfers of −0.25 and −0.37 (GeV) 2 .

2 data tables

Axis error includes +- 13/13 contribution (Ovearall systematic uncertainty. Included).

Axis error includes +- 13/13 contribution (Ovearall systematic uncertainty. Included).