Dimuon and trimuon events produced by the interaction of 250 GeV muons in an iron target have been studied and are shown to originate predominantly from charm production. The data are used to measure the contribution of charm to the nucleon structure function F 2 . The cross sections for real photoproduction ( Q 2 =0) of charm in the current fragmentation region are derived as a function of photon energy and are found to be ∼0.6% of the total, hadronic photoproduction cross section in this energy range. The measured cross sections are found to be well represented by the photon-gluon fusion model. The charmed quark fragmentation function is obtained by using this model to fit the measured decay muon energy distribution and is found to be well represented by exp(1.6±1.6) Z . The data are used to study the momentum distribution of the gluons in the nucleon. An upper limit of 1.4% (90% confidence level) is set on the branching ratio D→ μν and a model-dependent upper limit on the branching ratio F→ μν is derived.
The charm contribution to the nucleon structure function from the dimuon data.
No description provided.
No description provided.
The high mass μ + μ − pairs produced by 280 GeV μ + on a carbon target are studied in a search for the Y production. The high mass continuum in the region 2–18 GeV is interpreted in terms of QED pair production and of μ pairs originating from the decay of hidden and open charm particles as well as of hadrons ( π , K) from deep inelastic interactions. The upper limit for the upsilon production by muons is found to be, at the 90% confidence level, σ γ ·(γ→μ + μ − )<13·10 −39 cm 2 /nucleon.
.
.
.
Measurements of pp→μ+μ−+X at s=44 and 62 GeV are compared. The data are taken under identical conditions utilizing clean proton-proton collisions from the CERN intersecting storage rings and confirm scaling to 5%. The observed μ+μ− yield is a factor of 1.6±0.2 larger than estimated from a simple parton model but is consistent with QCD. The pT dependence of the muon pairs agrees well with expectations from QCD.
No description provided.
We have measured the relative cross sections for muon pair production by 280 GeV/ c negative pions on three different targets: carbon, copper, and tungsten. The value of α obtained from the parametrization σ = constant × A α is 0.94 ± 0.02 ± 0.02, whereas the parametrization σ≈σ 0 ( Z A ) A α′ , where σ 0 ( Z A ) is given by the Drell-Yan model, leads to α ′ = 0.97 ±0.02±0.02. This last result is in agreement with the quark additivity rule which is inherent in the Drell-Yan model, no dependence is observed on the transverse momentum of the muon pair.
PARAMETRISATION OF CROSS-SECTION IS SIG=CONST.*A**POWER.
PARAMETRISATION OF CROSS-SECTION IS SIG=SIG0(Z/A)*A**POWER WHERE SIG0(Z/A) IS GIVEN BY DRELL-YAN MODEL.
We report a high-statistics study of the reaction p+W→μ++μ−+X with use of an intense 400-GeV/c proton beam, a magnetized-iron beam dump, and a wide-acceptance detector. Using data near xF=0, we have extracted the nucleon sea-quark distribution and find it to be a factor 1.6±0.3 larger than that obtained by inelastic charged-current neutrino scattering. We then compare the Drell-Yan prediction with our data including the previously unexplored region of large xF and find excellent agreement for a wide range of μ-pair invariant mass.
Dimuon mass mass distribution at XFP=0.1.
Dimuon production for varying mass as function of XFP.
Dimuon production for varying mass as function of XFP.
Prompt dimuon production has been measured. Events with mass up to 25 GeV/c2 are observed, as well as the J and ϒ resonances. Cross sections are given for J and ϒ production. For the continuum, the scaling function F(τ) is measured at very small values of τ=ms covering the range 0.05<τ<0.20.
No description provided.
HERE UPSILON = ALL USILON FAMILY. ANGULAR DISTBN. IS SEEN TO BE ISOTROPIC.
No description provided.
We report final results of a series of measurements of continuum dimuon production in proton-nucleus collisions at Fermilab. New results with 6 times more statistics are included. A full description of the apparatus and methods used in the analysis of this series of measurements is given. The sea quark distribution of the nucleon is determined within the context of Drell-Yan and quantum-chromodynamic description of dilepton production in hadron collisions.
No description provided.
No description provided.
No description provided.
We present proton-nucleus dimuon-production cross sections for masses between 4 and 15 GeV, center-of-mass rapidities between -0.23 and 0.6 and incident energies of 200, 300, and 400 GeV. The data confirm scaling to the 20% level. The dependence of continuum 〈pT〉 on beam energy is also presented.
No description provided.
No description provided.
No description provided.
The mass spectrum of muon pairs in the range 5 to 15 GeV is studied in the inclusive reaction p+nucleus→μ++μ−+anything. The ϒ and continuum distribution are presented as is the A dependence of the continuum. Comparison with a parton-annihilation model yields a sea-quark distribution.
No description provided.
No description provided.