Date

Subject_areas

Test of {QED} in $e^+ e^-$ Annihilation at Energies Between 12-{GeV} and 31.6-{GeV}

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 94 (1980) 259-265, 1980.
Inspire Record 153127 DOI 10.17182/hepdata.45228

We have measured the reactions e + e − → e + e − → μ + μ − and e + e − → γγ at c.m. energies between 12 and 31.6 GeV. Excellent agreement with the predictions of QED has been found, resulting in cut off parameters Λ + > 112 GeV and Λ − > 139 GeV for the first process and Λ + > 34 GeV and Λ − > 42 GeV (95% c.1.) for the last one. A limit on the Weinberg angle of sin 2 θ W < 0.55 (95% c.1.) has been obtained.

3 data tables

SIG(C=QED) QED predictions for the cross sections. Only statistical errors are given.

SIG(C=QED) QED predictions for the cross sections. Only statistical errors are given.

SIG(C=QED) QED predictions for the cross sections. Only statistical errors are given.


Search for Spinless Bosons in $e^+ e^-$ Annihilation

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Kirschfink, F.J. ; et al.
Phys.Lett.B 154 (1985) 236-242, 1985.
Inspire Record 212873 DOI 10.17182/hepdata.45223

We have measured the cross sections for e + e − → e + e − , e + e − → μ + μ − , e + e − → γγ and e + e − → hadrons in an energy scan at center of mass energies between 39.79 and 46.72 GeV in 30 MeV steps. New spinless bosons, whose existence has been postulated as a possible means to explain the anomalously large radiative width of the Z 0 found at the CERN SPS p p collider, are ruled out in the scan region. The data are used to set limits on the couplings to lepton, photon and quark pairs of bosons with masses above 46.72 GeV.

1 data table

SIG(C=SM) is the Standard Model predicted cross section.


Search for Fractionally Charged Particles Produced in $e^+ e^-$ Annihilation

The ARGUS collaboration Albrecht, H. ; Binder, U. ; Harder, G. ; et al.
Phys.Lett.B 156 (1985) 134-138, 1985.
Inspire Record 214357 DOI 10.17182/hepdata.45210

A search has been made for particles with charge Q = 1 3 , Q = 2 3 and Q = 4 3 produced in e + e − annihilation using the ARGUS detector at the e + e − storage ring DORIS, operating at a centre of mass energy around 10 GeV. No candidate events were found in 84.5 pb −1 of collected data. Upper limits are established for the cross section for the production of fractionally charged particles with masses up to 4 GeV c 2 , improving on previously obtained limits.

1 data table

Two different models (I and II) are considered (see text).


$\Sigma(c$)++ and $\Sigma(c$)0 Production From $e^+ e^-$ Annihilation in the $\Upsilon$ Energy Region

The CLEO collaboration Bowcock, T.J.V. ; Kinoshita, K. ; Pipkin, F.M. ; et al.
Phys.Rev.Lett. 62 (1989) 1240, 1989.
Inspire Record 25467 DOI 10.17182/hepdata.47269

We have observed Σc++ and Σc0 baryons in nonresonant e+e− interactions through their decays to Λc+π± using the CLEO detector. The mass difference M(Σc++)-M(Λc+) is measured to be 167.8±0.4±0.3 MeV; for M(Σc0)-M(Λc+) we find 167.9±0.5±0.3 MeV. Σc decay accounts for (18±3±5)% of Λc+ production.

2 data tables

The cross section ratio is multiplied by a factor of 1.5 to account for theunobserved SIGMA/C(2455)+.

No description provided.


Resonance Decomposition of the $D^*$0 (2420) Through a Decay Angular Analysis

The ARGUS collaboration Albrecht, H. ; Glaser, R. ; Harder, G. ; et al.
Phys.Lett.B 232 (1989) 398-404, 1989.
Inspire Record 280943 DOI 10.17182/hepdata.45198

Using data collected with the ARGUS detector, we have performed a decay angular analysis of the enhancement, previously known as the D ∗ (2420), seen in the final state D ∗ (2010) + π − . We thereby exhibit that the observed broad structure is actually due to two relatively narrow resonances, one of which is identified as the D ∗ (2459) 0 , while the massof the other is measured to be (2414±2±5) MeV/ c 2 . The results of the analysis are in good agreement with the interpretation of the two states as L =1 D mesons of spin-parities 2 + and 1 + respectively.

2 data tables

The cross sections times branching ratio.

It is assumed that decays D PION and D* PION saturate the total widths.


Production and decay of the D(s1)+ (2536)

The CLEO collaboration Alexander, James P. ; Bebek, C. ; Berkelman, Karl ; et al.
Phys.Lett.B 303 (1993) 377-384, 1993.
Inspire Record 352823 DOI 10.17182/hepdata.47264

Using the CLEO-II detector at CESR, we have observed the D s 1 (2536) + in the decay modes D s1 + →D ∗0 K + and D ∗+ K S + , and measured its fragmentation and production ratios. Using the helicity angle distribution of the daugter D ∗0 , we obtain new evidence for the assignment of 1 + for the spin and parity of the D s 1 + . We also set upper limits on the decays D s1 + →D s ∗+ λ, D 0 K + and D + K s 0 .

2 data tables

No description provided.

No description provided.


Observation of excited baryon states decaying to Lambda(c)+ pi+ pi-

The CLEO collaboration Edwards, K.W. ; Ogg, M. ; Bellerive, A. ; et al.
Phys.Rev.Lett. 74 (1995) 3331-3335, 1995.
Inspire Record 381696 DOI 10.17182/hepdata.47248

Using data collected by the CLEO II detector, we have observed two states decaying to Λc+π+π−. Relative to the Λc+, their mass splittings are measured to be +307.5±0.4±1.0 and +342.2±0.2±0.5MeV/c2, respectively; this represents the first measurement of the less massive state. These two states are consistent with being orbitally excited, isospin zero Λc+ states.

4 data tables

CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(Z) = FD(Z) = const * (1/Z)*1/(1 - (1/Z)-CONST(NAME=EPS)/(1-Z))**2. Charged conjugated states are understood.

Charged conjugated states are understood.

Charged conjugated states are understood.

More…

Observation of orbitally excited B mesons

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 345 (1995) 598-608, 1995.
Inspire Record 382208 DOI 10.17182/hepdata.48321

Experimental evidence for the existence of orbitally excited B meson states is presented in an analysis of the Bπ and B ∗ π distribution of Q = m(B ∗∗ ) − m(B (∗) ) − m(π) using Z 0 decay data taken with the DELPHI detector at LEP. The mean Q-value of the decays B ∗∗ → B (∗) π is measured to be 284 ± 5 (stat.) ± 15 (syst.) MeV/c 2 , and the Gaussian width of the signal is 79 ± 5 (stat.) ± 8 (syst.) MeV/c 2 . This signal can be described as a single resonance of mass m = 5732 ± 5 (stat.) ± 20 (syst.) MeV/c 2 and full width Γ = 145 ± 28 MeV/c 2 . The observed shape is also consistent with the production of several broad and narrow states as predicted by the quark model and partly observed in the D-meson sector. The production rate of B ∗∗ per b-jet is found to be 0.27 ± 0.02 (stat.) ± 0.06 (syst.).

1 data table

No description provided.


B* production in Z decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 68 (1995) 353-362, 1995.
Inspire Record 395026 DOI 10.17182/hepdata.52359

None

2 data tables

No description provided.

No description provided.


First measurement of the quark to photon fragmentation function

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Z.Phys.C 69 (1996) 365-378, 1996.
Inspire Record 398193 DOI 10.17182/hepdata.12261

Earlier measurements at LEP of isolated hard photons in hadronic Z decays, attributed to radiation from primary quark pairs, have been extended in the ALEPH experiment to include hard photon productioninside hadron jets. Events are selected where all particles combine democratically to form hadron jets, one of which contains a photon with a fractional energyz≥0.7. After statistical subtraction of non-prompt photons, the quark-to-photon fragmentation function,D(z), is extracted directly from the measured 2-jet rate. By taking into account the perturbative contributions toD(z) obtained from anO(ααs) QCD calculation, the unknown non-perturbative component ofD(z) is then determined at highz. Provided due account is taken of hadronization effects nearz=1, a good description of the other event topologies is then found.

16 data tables

2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).

2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).

2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).

More…