We have updated our measurement of the cross section for e^+e^- -> psi(3770) -> hadrons, our publication "Measurement of sigma(e^+e^- -> psi(3770) -> hadrons) at E_{c.m.} = 3773 MeV", arXiv:hep-ex/0512038, Phys.Rev.Lett.96, 092002 (2006). Simultaneous with this arXiv update, we have published an erratum in Phys.Rev.Lett.104, 159901 (2010). There, and in this update, we have corrected a mistake in the computation of the error on the difference of the cross sections for e^+e^- -> psi(3770) -> hadrons and e^+e^- -> psi(3770) -> DDbar. We have also used a more recent CLEO measurement of cross section for e^+e^- -> psi(3770) -> DDbar. From this, we obtain an upper limit on the branching fraction for psi(3770) -> non-DDbar of 9% at 90% confidence level.
Measured cross section for the process E+ E- --> PSI(3770) --> hadrons.
We present a measurement of the inclusive jet cross section in ppbar interactions at sqrt{s}=1.96 TeV using 385 pb^{-1} of data collected with the CDF II detector at the Fermilab Tevatron. The results are obtained using an improved cone-based jet algorithm (Midpoint). The data cover the jet transverse momentum range from 61 to 620 GeV/c, extending the reach by almost 150 GeV/c compared with previous measurements at the Tevatron. The results are in good agreement with next-to-leading order perturbative QCD predictions using the CTEQ6.1M parton distribution functions.
The inclusive jet cross section corrected to the hadron level.
The inclusive jet cross section corrected to the parton level.
We report on a measurement of the inclusive jet production cross section in pp-bar collisions at sqrt{s} = 1.96 TeV using data collected with the upgraded Collider Detector at Fermilab in Run II (CDF II) corresponding to an integrated luminosity of 385 pb^-1. Jets are reconstructed using the kt algorithm. The measurement is carried out for jets with rapidity 0.1 < | yjet | < 0.7 and transverse momentum in the range 54 < ptjet < 700 GeV/c. The measured cross section is in good agreement with next-to-leading order perturbative QCD predictions after the necessary non-perturbative parton-to-hadron corrections are included.
Measured jet differential cross section as a function of PT.
After completion of the data taking for the νμ→ντ oscillation search, the CHORUS lead–scintillator calorimeter was used in the 1998 run as an active target. High-statistics samples of charged-current interactions were collected in the CERN SPS west area neutrino beam. This beam contained predominantly muon (anti-)neutrinos from sign-selected pions and kaons. We measure the flux and energy spectrum of the incident neutrinos and compare them with beam simulations. The neutrino–nucleon and anti-neutrino–nucleon differential cross-sections are measured in the range 0.01<x<0.7 , 0.05<y<0.95 , 10<Eν<200 GeV . We extract the neutrino–nucleon structure functions F2(x,Q2) , xF3(x,Q2) , and R(x,Q2) and compare these with results from other experiments.
The measured F2 and xF3 at X = 0.020.
The measured F2 and xF3 at X = 0.045.
The measured F2 and xF3 at X = 0.080.
Using 20.7 pb^-1 of e+e- annihilation data taken at sqrt{s} = 3.671 GeV with the CLEO-c detector, precision measurements of the electromagnetic form factors of the charged pion, charged kaon, and proton have been made for timelike momentum transfer of |Q^2| = 13.48 GeV^2 by the reaction e+e- to h+h-. The measurements are the first ever with identified pions and kaons of |Q^2| > 4 GeV^2, with the results F_pi(13.48 GeV^2) = 0.075+-0.008(stat)+-0.005(syst) and F_K(13.48 GeV^2) = 0.063+-0.004(stat)+-0.001(syst). The result for the proton, assuming G^p_E = G^p_M, is G^p_M(13.48 GeV^2) = 0.014+-0.002(stat)+-0.001(syst), which is in agreement with earlier results.
Born cross section of $e^+e^-\rightarrow h^+h^-$
Timelike form factor
We describe a search for psi(3770) decay to two-body non-DDbar final states in e+e- data produced by the CESR collider and analyzed with the CLEO-c detector. Vector-pseudoscalar production of Rho0Pi0, Rho+Pi-, OmegaPi0, PhiPi0, RhoEta, OmegaEta, PhiEta, RhoEtaPrime, OmegaEtaPrime, PhiEtaPrime, Kstar0 K0bar, and Kstar+K- is studied along with that of BOnePi (BOne0Pi0 and BOne+Pi-) and Pi+Pi-Pi0. A statistically significant signal is found for PhiEta, at an excess cross section of (2.4 +- 0.6) pb [Gamma_{PhiEta} (psi(3770)) =(74 +- 16)Mev], and a suggestive suppression of Pi+Pi-Pi0 and RhoPi. We conclude with form factor determinations for OmegaPi0, RhoEta, and RhoEtaPrime.
Cross sections at 3.671 and 3.773 GeV.
Cross sections for e^+e^- -> ppbar have been measured at 10 center-of-mass energies from 2.0 to 3.07 GeV by the BESII experiment at the BEPC, and proton electromagnetic form factors in the time-like region have been determined.
Cross section and proton form factor measurements. The cross section quoted is the lowest order cross section corrected for initial and final state radiation and coulomb effects.
We present a measurement of the $\ttbar$ production cross section using $194 \mathrm{pb^{-1}}$ of CDF II data using events with a high transverse momentum electron or muon, three or more jets, and missing transverse energy. The measurement assumes 100% $t\to Wb$ branching fraction. Events consistent with $\ttbar$ decay are found by identifying jets containing heavy flavor semileptonic decays to muons. The dominant backgrounds are evaluated directly from the data. Based on 20 candidate events and an expected background of 9.5$\pm$1.1 events, we measure a production cross section of $5.3\pm3.3^{+1.3}_{-1.0} \mathrm{pb}$, in agreement with the standard model.
TTBAR production cross section.
We report on a study of jet shapes in inclusive jet production in $p \bar{p}$ collisions at $\sqrt{s} = 1.96 {\rm TeV}$ using the upgraded Collider Detector at Fermilab in Run II (CDF II) based on an integrated luminosity of $170 \rm pb^{-1}$. Measurements are carried out on jets with rapidity $0.1 < |Y^{\rm jet}| < 0.7$ and transverse momentum 37 GeV/c $< P_T^{\rm jet} < 380$ GeV/c. The jets have been corrected to the hadron level. The measured jet shapes are compared to leading-order QCD parton-shower Monte Carlo predictions as implemented in the PYTHIA and HERWIG programs. PYTHIA, tuned to describe the underlying event as measured in CDF Run I, provides a better description of the measured jet shapes than does PYTHIA or HERWIG with their default parameters.
The measured differential jet shape.
The measured differential jet shape.
The measured differential jet shape.
We present a study of the production of K_s^0 and Lambda^0 in inelastic pbar-p collisions at sqrt(s)= 1800 and 630 GeV using data collected by the CDF experiment at the Fermilab Tevatron. Analyses of K_s^0 and Lambda^0 multiplicity and transverse momentum distributions, as well as of the dependencies of the average number and <p_T> of K_s^0 and Lambda^0 on charged particle multiplicity are reported. Systematic comparisons are performed for the full sample of inelastic collisions, and for the low and high momentum transfer subsamples, at the two energies. The p_T distributions extend above 8 GeV/c, showing a <p_T> higher than previous measurements. The dependence of the mean K_s^0(Lambda^0) p_T on the charged particle multiplicity for the three samples shows a behavior analogous to that of charged primary tracks.
K0S inclusive invariant PT distribution for HARD events at a centre of massenergy 1800 GeV.
K0S inclusive invariant PT distribution for MB events at a centre of mass energy 1800 GeV.
K0S inclusive invariant PT distribution for SOFT events at a centre of massenergy 1800 GeV.