The doubly differential cross section for the production of He3 and He4 by 800 MeV protons from C12, Ti, and Pb has been measured at laboratory angles of 6° and 15°. The momentum of the detected helium nuclei varied from 1 to 2 GeV/c, the maximum being well above the incident proton momentum of 1.46 GeV/c. The cross sections were found to increase with increasing target mass and decrease with increasing momentum and scattering angle. In our momentum region, the He3 production cross section is 1.5–10 times larger than He4 depending on the target and the momentum. The data are consistent with the hypothesis that the dominant reaction mechanism is a direct process where the initial nucleon-nucleon scattering is followed by a sequential pickup of neutrons.
No description provided.
No description provided.
No description provided.
We present an analysis of 800-GeV proton-induced Drell-Yan production data from isoscalar targets 2H and C, and from W, which has a large neutron excess. The ratio of cross sections per nucleon, R-σW/σIS, is sensitive to the difference between the d¯(x) and u¯(x) structure functions of the proton. We find that R is close to unity in the range 0.04≤x≤0.27, allowing upper limits to be set on the d¯-u¯ asymmetry. Additionally, the shape of the differential cross section m3 d2σ/dxF dm for 2H at xF≊0 shows no evidence of an asymmetric sea in the proton. We examine the implications of these data for various models of the violation of the Gottfried sum rule in deep-inelastic lepton scattering.
Upper limit at the 2sigma statistical error level. Mass of MU+ MU- in GeV.
We present results on charm pair correlations measured in proton-emulsion interactions at s =38.7 GeV. The predictions of leading order QCD for the distributions in invariant mass, rapidity gap, x F , and polar angle in the charm pair CMS are qualitatively consistent with our measurements. The mean p T of the pairs is equal within errors to that measured in dilepton production at the same energy and mass range.
No description provided.
We report results on D 0 and D + production in proton-emulsion interactions at s =38.7 GeV. A fit to the form (1−| x F |) n exp (−bp 2 T ) yields n=6.9 +1.9 −1.8 and b=0.84 +0.10 −0.08 (GeV/ c ) −2 . The total inclusive cross section, is assuming linear A dependence, is measured to be 38±3(stat.) ±13 (sys.) μ b for the D 0 and 38±9±14 μ b for the D + . A comparison of these results with previous measurements indicates that nuclear effects do not strongly influence charm production. The predictions of QCD are in good agreement with our data.
The differential cross section is fitted by the equation : D2(SIG)/D(XL)/D(PT**2) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).
The differential cross section is fitted by the equation : D2(SIG)/D(XL)/D(PT**2) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).
Linear A-dependence. Different modes of the charm mesons detection were used (see text for detail).
The yields of the 1S and the sum of the 2S and 3S Υ resonances have been measured for 800-GeV protons incident on targets of H2, C, Ca, Fe, and W. A significant nuclear dependence is seen in the yield per nucleon which, within errors, is the same for the Υ(1S) and Υ(2S+3D) states. A large decrease in the relative yield from heavy nuclei is found for the range xF<0. Significant nuclear dependence is also observed in the pt distribution. Differential cross sections for the Υ(1S) for H2 are presented over the ranges 0.24≤pt≤3.4 GeV/c and -0.15≤xF≤0.5.
Mass dependence as a function of feynman X for UPSI(1S) production.
Mass dependence as a function of feynman X for UPSI(2S/3S) production.
Mass dependence as a function of transverse momentum for UPSI(1S) production.
An angular method of identifying diffractive excitation (DE) events for interactions of a hadron beam in nuclear emulsion is applied to identifying DE events in interactions of heavy ions beams. The ‘‘apparent’’ mean free paths (MFP) of DE processes for O16 (28Si) beams are 1.00±0.12, 2.4−0.7+1.6, and 2.2±0.4 (1.5±0.2) m, respectively, at 200, 60, and 14.6 GeV/nucleon, which corresponds to 20–10% of the MFP for total inelastic interactions. Distinctive features of diffractively excited nuclei are discussed.
No description provided.
No description provided.
No description provided.
The yield of J/ψ and ψ’ vector-meson states has been measured for 800-GeV protons incident on deuterium, carbon, calcium, iron, and tungsten targets. A depletion of the yield per nucleon from heavy nuclei is observed for both J/ψ and ψ’ production. This depletion exhibits a strong dependence on xF and pt. Within experimental errors the depletion is the same for the J/ψ and the ψ’.
Ratio of heavy nucleus to deuterium yields. A is the mass number of the target nucleus.
Ratio of heavy nucleus to deuterium yeilds. A is the mass number of the target nucleus.
Ratio of heavy nucleus to deuterium yeilds. A is the mass number of the target nucleus.
A precise measurement of the atomic-mass dependence of dimuon production induced by 800-GeV protons is reported. Over 450 000 muon pairs with dimuon mass M≥4 GeV were recorded from targets of H2, C, Ca, Fe, and W. The ratio of dimuon yield per nucleon for nuclei versus H2, R=YA/Y2H, is sensitive to modifications of the antiquark sea in nuclei. No nuclear dependence of this ratio is observed over the range of target-quark momentum fraction 0.1<xt<0.3. For xt<0.1 the ratio is slightly less than unity for the heavy nuclei. These results are compared with predictions of models of the European Muon Collaboration effect.
High Mass trigger data.
Intermediate Mass trigger data.
Low Mass trigger data.
Measurements of the cross section for production of massive dihadrons by 800-GeV protons incident on a tungsten target are presented. These are compared with measurements taken at lower and higher s and with perturbative-QCD predictions. Scaling and A-dependence behaviors observed at lower energies are confirmed, and good agreement with QCD is obtained. Model dependences of earlier measurements are discussed.
No description provided.
Triple differential cross section. Note that the errors plotted in the original figure are 2 time too large. The numbers given here are correct.
The transverse-momentum spectra of lambdas (Λ0, Λ¯0) produced in the central region has been measured in p¯p collisions at s=1.8 TeV at the Fermilab Collider. We find that the average transverse momentum of the lambdas increases more rapidly with center-of-mass energy than that of charged particles, and the ratio of lambdas to charged particles increases as a function of center-of-mass energy.
No description provided.
No description provided.
No description provided.