Date

Search for light sterile neutrinos with two neutrino beams at MicroBooNE

The MicroBooNE collaboration Abratenko, P. ; Andrade Aldana, D. ; Arellano, L. ; et al.
Nature 648 (2025) 64-69, 2025.
Inspire Record 3088922 DOI 10.17182/hepdata.166435

<jats:title>Abstract</jats:title> <jats:p> The existence of three distinct neutrino flavours, <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> , <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub> and <jats:italic>ν</jats:italic> <jats:sub>τ</jats:sub> , is a central tenet of the Standard Model of particle physics <jats:sup>1,2</jats:sup> . Quantum-mechanical interference can allow a neutrino of one initial flavour to be detected sometime later as a different flavour, a process called neutrino oscillation. Several anomalous observations inconsistent with this three-flavour picture have motivated the hypothesis that an additional neutrino state exists, which does not interact directly with matter, termed as ‘sterile’ neutrino, <jats:italic>ν</jats:italic> <jats:sub>s</jats:sub> (refs.  <jats:sup>3–9</jats:sup> ). This includes anomalous observations from the Liquid Scintillator Neutrino Detector (LSND) <jats:sup>3</jats:sup> experiment and Mini-Booster Neutrino Experiment (MiniBooNE) <jats:sup>4,5</jats:sup> , consistent with <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub>  →  <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> transitions at a distance inconsistent with the three-neutrino picture. Here we use data obtained from the MicroBooNE liquid-argon time projection chamber <jats:sup>10</jats:sup> in two accelerator neutrino beams to exclude the single light sterile neutrino interpretation of the LSND and MiniBooNE anomalies at the 95% confidence level (CL). Moreover, we rule out a notable portion of the parameter space that could explain the gallium anomaly <jats:sup>6–8</jats:sup> . This is one of the first measurements to use two accelerator neutrino beams to break a degeneracy between <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> appearance and disappearance, which would otherwise weaken the sensitivity to the sterile neutrino hypothesis. We find no evidence for either <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub>  →  <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> flavour transitions or <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> disappearance that would indicate non-standard flavour oscillations. Our results indicate that previous anomalous observations consistent with <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub>  →  <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> transitions cannot be explained by introducing a single sterile neutrino state. </jats:p>

3 data tables

14 observation channels used in this analysis. The first 7 channels correspond to the BNB, while the last 7 channels correspond to the NuMI beam. Each set of seven channels is split by reconstructed event type as well as containment in the detector, fully contained (FC) or partially contained (PC). The seven channels in order are $\nu_e$CC FC, $\nu_e$CC PC, $\nu_\mu$CC FC, $\nu_\mu$CC PC, $\nu_\mu$CC $\pi^0$ FC, $\nu_\mu$CC $\pi^0$ PC, and NC $\pi^0$. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.

Four $\nu_e$CC observation channels, after constraints from 10 $\nu_\mu$CC and NC $\pi^0$ channels. The four channels in order are BNB $\nu_e$CC FC, BNB $\nu_e$CC PC, NuMI $\nu_e$CC FC, and NuMI $\nu_e$CC PC. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.

14 channel covariance matrix showing uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties have not been included, but they can be calculated with the Combined Neyman-Pearson (CNP) method. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.


Searches for Light Dark Matter and Evidence of Coherent Elastic Neutrino-Nucleus Scattering of Solar Neutrinos with the LUX-ZEPLIN (LZ) Experiment

Akerib, D.S. ; Al Musalhi, A.K. ; Alder, F. ; et al.
2025.
Inspire Record 3091049 DOI 10.17182/hepdata.167350

We present searches for light dark matter (DM) with masses 3-9 GeV/$c^2$ in the presence of coherent elastic neutrino-nucleus scattering (CE$ν$NS) from $^{8}$B solar neutrinos with the LUX-ZEPLIN experiment. This analysis uses a 5.7 tonne-year exposure with data collected between March 2023 and April 2025. In an energy range spanning 1-6 keV, we report no significant excess of events attributable to dark matter nuclear recoils, but we observe a significant signal from $^{8}$B CE$ν$NS interactions that is consistent with expectation. We set world-leading limits on spin-independent and spin-dependent-neutron DM-nucleon interactions for masses down to 5 GeV/$c^2$. In the no-dark-matter scenario, we observe a signal consistent with $^{8}$B CE$ν$NS events, corresponding to a $4.5σ$ statistical significance. This is the most significant evidence of $^{8}$B CE$ν$NS interactions and is enabled by robust background modeling and mitigation techniques. This demonstrates LZ's ability to detect rare signals at keV-scale energies.

5 data tables

90% CL WIMP SI cross sections, including sensitivities

90% CL WIMP SDn cross sections, including sensitivities and nuclear structure uncertainties

90% CL WIMP SDp cross sections, including sensitivities and nuclear structure uncertainties

More…

Baryon anti-Baryon Photoproduction Cross Sections off the Proton

Afzal, F. ; Albrecht, M. ; Amaryan, M. ; et al.
2025.
Inspire Record 3075566 DOI 10.17182/hepdata.166629

The GlueX experiment at Jefferson Lab has observed $p\bar{p}$ and, for the first time, $Λ\barΛ$ and $p\barΛ$ photoproduction from a proton target at photon energies up to 11.6 GeV. The angular distributions are forward peaked for all produced pairs, consistent with Regge-like $t$-channel exchange. Asymmetric wide-angle anti-baryon distributions show the presence of additional processes. In a phenomenological model, we find consistency with a double $t$-channel exchange process where anti-baryons are created only at the middle vertex. The model matches all observed distributions with a small number of free parameters. In the hyperon channels, we observe a clear distinction between photoproduction of the $Λ\barΛ$ and $p\barΛ$ systems but general similarity to the $p\bar{p}$ system. We report both total cross sections and cross sections differential with respect to momentum transfer and the invariant masses of the created particle pairs. No narrow resonant structures were found in these reaction channels. The suppression of $s\bar{s}$ quark pairs relative to $d\bar{d}$ quark pairs is similar to what has been seen in other reactions.

10 data tables

Measured $\frac{d\sigma}{dm_{\Lambda\bar{\Lambda}}}~[\mathrm{nb/GeV}]$ for reaction $\gamma p\to \{\Lambda \bar{\Lambda}\} p$ including data of $6.5 \leq E_{\gamma} \leq 11.5$ [GeV], splitted in 10 energy bins (each as a column in the table). The observable $m_{\Lambda\bar{\Lambda}}$ is in unit of $[\mathrm{nb/GeV}]$ and is divided into bins of width 0.05 $[\mathrm{GeV}]$ (each as a row in the table). The global systematic uncertainty is 19% (not included in the table), with contributions of 5% from kinematic fitting, 10% from data selection, 5% from flux normalization, 13% from tracking efficiency, 3% from model dependence, and 6% from run-period variations.

Measured $\frac{d\sigma}{dm_{p\bar{\Lambda}}}~[\mathrm{nb/GeV}]$ for reaction $\gamma p\to \{p \bar{\Lambda}\} \Lambda$ including data of $6.5 \leq E_{\gamma} \leq 11.5$ [GeV], splitted in 10 energy bins (each as a column in the table). The observable $m_{p\bar{\Lambda}}$ is in unit of $[\mathrm{nb/GeV}]$ and is divided into bins of width 0.1 $[\mathrm{GeV}]$ (each as a row in the table). The global systematic uncertainty is 22% (not included in the table), with contributions of 2% from kinematic fitting, 10% from data selection, 5% from flux normalization, 15% from tracking efficiency, 3% from model dependence, and 10% from run-period variations.

Measured $\frac{d\sigma}{dm_{p\bar{p}}}~[\mathrm{nb/GeV}]$ for reaction $\gamma p\to \{p \bar{p}\} p$ including data of $3.5 \leq E_{\gamma} \leq 11.5$ [GeV], splitted in 15 energy bins (each as a column in the table). The observable $m_{p\bar{p}}$ is in unit of $[\mathrm{nb/GeV}]$ and is divided into bins of width 0.044 $[\mathrm{GeV}]$ (each as a row in the table). The global systematic uncertainty is 13% (not included in the table), with contributions of 8% from kinematic fitting, 4% from data selection, 5% from flux normalization, 8% from tracking efficiency, 3% from model dependence, and 1% from run-period variations.

More…

Model-agnostic likelihood for the reinterpretation of the $B^+\to K^+ν\barν$ measurement at Belle II

The Belle-II collaboration Abumusabh, Merna ; Adachi, Ichiro ; Aggarwal, Latika ; et al.
Phys.Rev.D 112 (2025) 092016, 2025.
Inspire Record 2947386 DOI 10.17182/hepdata.166082

We recently measured the branching fraction of the $B^{+}\rightarrow K^{+}ν\barν$ decay using 362fb$^{-1}$ of on-resonance $e^+e^-$ collision data under the assumption of Standard Model kinematics, providing the first evidence for this decay. To facilitate future reinterpretations and maximize the scientific impact of this measurement, we publicly release the full analysis likelihood along with all necessary material required for reinterpretation under arbitrary theoretical models sensitive to this measurement. In this work, we demonstrate how the measurement can be reinterpreted within the framework of the Weak Effective Theory. Using a kinematic reweighting technique in combination with the published likelihood, we derive marginal posterior distributions for the Wilson coefficients, construct credible intervals, and assess the goodness of fit to the Belle II data. For the Weak Effective Theory Wilson coefficients, the posterior mode of the magnitudes $|C_\mathrm{VL}+C_\mathrm{VR}|$, $|C_\mathrm{SL}+C_\mathrm{SR}|$, and $|C_\mathrm{TL}|$ corresponds to the point ${(11.3, 0.0, 8.2)}$. The respective 95% credible intervals are $[1.9, 16.2]$, $[0.0, 15.4]$, and $[0.0, 11.2]$.

2 data tables

The joint number density useful for reinterpretation in terms of new physics models (https://arxiv.org/abs/2402.08417). This is a 2d histogram of the ITA signal samples, combining both regions B (bins of $\eta(\rm{BDT}_2) \in [0.92, 0.94]$), binned in the kinematic variable $q^{2}_{\rm{gen}}$ and the fitting variables $q^{2}_{\rm{rec}} \times \eta(\rm{BDT}_2)$ (flattened).

The joint number density useful for reinterpretation in terms of new physics models (https://arxiv.org/abs/2402.08417). This is a 2d histogram of the HTA signal samples, binned in the kinematic variable $q^{2}_{\rm{gen}}$ and the fitting variable $\eta(\rm{BDTh})$.


Cross sections of $\eta$ mesons in $p$ $+$ $p$ collisions at forward rapidity at $\sqrt{s}=500$ GeV and central rapidity at $\sqrt{s}=510$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Adare, A. ; et al.
2025.
Inspire Record 2943245 DOI 10.17182/hepdata.166316

We present the first measurements of the forward and midrapidity $η$-meson cross sections from $p$$+$$p$ collisions at $\sqrt{s}=500$ and $510$~GeV, respectively. We also report the midrapidity $η/π^0$ ratio at 510 GeV. The forward cross section is measured differentially in $η$-meson transverse momentum ($p_T$) from 1.0 to 6.5~GeV/$c$ for pseudorapidity $3.0<|η|<3.8$. The midrapidity cross section is measured from 3.5 to 44 GeV/$c$ for pseudorapidity $|η|<0.35$. Both cross sections serve as critical inputs to an updated global analysis of the $η$-meson fragmentation functions.

5 data tables

The invariant differential cross section of $\eta$ mesons at forward rapidity in pp collisions at center-of-mass energy 500 GeV.

The invariant differential cross section of $\eta$ mesons at central rapidity in pp collisions at center-of-mass energy 510 GeV.

The ratio of $\eta$ to $\pi^0$ cross sections at central rapidity in pp collisions at center-of-mass energy 510 GeV.

More…

Low-mass vector-meson production at forward rapidity in $p$$+$$p$ and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$~GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Adare, A. ; et al.
2025.
Inspire Record 2942761 DOI 10.17182/hepdata.165500

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low-mass vector-meson ($ω+ρ$ and $ϕ$) production through the dimuon decay channel at forward rapidity $(1.2<|\mbox{y}|<2.2)$ in $p$$+$$p$ and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$~GeV. The low-mass vector-meson yield and nuclear-modification factor were measured as a function of the average number of participating nucleons, $\langle N_{\rm part}\rangle$, and the transverse momentum $p_T$. These results were compared with those obtained via the kaon decay channel in a similar $p_T$ range at midrapidity. The nuclear-modification factors in both rapidity regions are consistent within the uncertainties. A comparison of the $ω+ρ$ and $J/ψ$ mesons reveals that the light and heavy flavors are consistently suppressed across both $p_T$ and ${\langle}N_{\rm part}\rangle$. In contrast, the $ϕ$ meson displays a nuclear-modification factor consistent with unity, suggesting strangeness enhancement in the medium formed.

6 data tables

The differential cross sections of $\omega+\rho$ mesons as a function of $p_T$ in $p+p$ collisions. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.

The differential cross sections of $\phi$ meson as a function of $p_T$ in $p+p$ collisions. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.

The invariant yields of $\phi$ and $\omega+\rho$ mesons as a function of $p_T$ in Au+Au collisions. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.

More…

Determination of $|V_{cb}|$ using $B\to D\ellν_\ell$ Decays at Belle II

The Belle-II collaboration Adachi, I. ; Adamczyk, K. ; Aggarwal, L. ; et al.
Belle II Preprint 2025-004, 2025.
Inspire Record 2936544 DOI 10.17182/hepdata.165464

We present a determination of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$ from the decay $B\to D\ellν_\ell$ using a $365~\mathrm{fb}^{-1}$$e^+e^-\toΥ(4S)\to B\bar B$ data sample recorded by the Belle II experiment at the SuperKEKB collider. The semileptonic decay of one $B$ meson is reconstructed in the modes $B^0\to D^-(\to K^+π^-π^-)\ell^+ν_\ell$ and $B^+\to \bar D^0(\to K^+π^-)\ell^+ν_\ell$, where $\ell$ denotes either an electron or a muon. Charge conjugation is implied. The second $B$ meson in the $Υ(4S)$ event is not reconstructed explicitly. Using an inclusive reconstruction of the unobserved neutrino momentum, we determine the recoil variable $w=v_B\cdot v_D$, where $v_B$ and $v_D$ are the 4-velocities of the $B$ and $D$ mesons. We measure the total decay branching fractions to be $\mathcal{B}(B^0\to D^-\ell^+ν_\ell)=(2.06 \pm 0.05\,(\mathrm{stat.}) \pm 0.10\,(\mathrm{sys.}))\%$ and $\mathcal{B}(B^+\to\bar D^0\ell^+ν_\ell)=(2.31 \pm 0.04\,(\mathrm{stat.}) \pm 0.09\,(\mathrm{sys.}))\%$. We probe lepton flavor universality by measuring $\mathcal{B}(B\to Deν_e)/\mathcal{B}(B\to Dμν_μ)=1.020 \pm 0.020\,(\mathrm{stat.})\pm 0.022\,(\mathrm{sys.})$. Fitting the partial decay branching fraction as a function of $w$ and using the average of lattice QCD calculations of the $B\to D$ form factor, we obtain $ |V_{cb}|=(39.2\pm 0.4\,(\mathrm{stat.}) \pm 0.6\,(\mathrm{sys.}) \pm 0.5\,(\mathrm{th.})$.

4 data tables

Differential decay rate $d\Gamma/dw$ for $B \to D \ell \nu$ averaged over 4 modes. The uncertainty listed represents the total uncertainty from statistical and systematic sources.

Differential decay rates $d\Gamma/dw$ for individual $B \to D \ell \nu$ modes. The uncertainty listed represents the total uncertainty from statistical and systematic sources.

Correlations (stat.+syst.) between the $d\Gamma_i/dw$ bins for the averaged $B \rightarrow D \ell \nu$ spectrum (10x10). Element indices 0-9 correspond to $w$ bins: 0: [1.00, 1.06], 1: [1.06, 1.12], 2: [1.12, 1.18], 3: [1.18, 1.24], 4: [1.24, 1.30], 5: [1.30, 1.36], 6: [1.36, 1.42], 7: [1.42, 1.48], 8: [1.48, 1.54], 9: [1.54, 1.59]

More…

Measurement of inclusive jet cross section and substructure in $p$+$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.D 111 (2025) 112008, 2025.
Inspire Record 2820229 DOI 10.17182/hepdata.158374

The jet cross-section and jet-substructure observables in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). Jets are reconstructed from charged-particle tracks and electromagnetic-calorimeter clusters using the anti-$k_{t}$ algorithm with a jet radius $R=0.3$ for jets with transverse momentum within $8.0<p_T<40.0$ GeV/$c$ and pseudorapidity $|η|<0.15$. Measurements include the jet cross section, as well as distributions of SoftDrop-groomed momentum fraction ($z_g$), charged-particle transverse momentum with respect to jet axis ($j_T$), and radial distributions of charged particles within jets ($r$). Also meaureed was the distribution of $ξ=-ln(z)$, where $z$ is the fraction of the jet momentum carried by the charged particle. The measurements are compared to theoretical next-to and next-to-next-to-leading-order calculatios, PYTHIA event generator, and to other existing experimental results. Indicated from these meaurements is a lower particle multiplicity in jets at RHIC energies when compared to models. Also noted are implications for future jet measurements with sPHENIX at RHIC as well as at the future Electron-Ion Collider.

8 data tables

The jet differential cross section as a function of jet $p_T$. Statistical uncertainties are typically smaller than the data points while systematic uncertainties are shown with boxes. An overall normalization systematic of 7% is not included in the point-by-point systematic uncertainties.

Distribution of the SoftDrop groomed momentum fraction $z_g$ for different jet $p_T$ bins. Standard SoftDrop parameters were used ($z_{cut}<0.1$ and $\beta=0$).

$\xi$ distributions for different jet $p_T$ bins.

More…

New constraints on cosmic ray-boosted dark matter from the LUX-ZEPLIN experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Al Musalhi, A.K. ; et al.
Phys.Rev.Lett. 134 (2025) 241801, 2025.
Inspire Record 2903333 DOI 10.17182/hepdata.157863

While dual-phase xenon time projection chambers (TPCs) have driven the sensitivity towards weakly interacting massive particles (WIMPs) at the GeV/c^2 to TeV/c^2 mass scale, the scope for sub-GeV/c^2 dark matter particles is hindered by a limited nuclear recoil energy detection threshold. One approach to probe for lighter candidates is to consider cases where they have been boosted by collisions with cosmic rays in the Milky Way, such that the additional kinetic energy lifts their induced signatures above the nominal threshold. In this Letter, we report first results of a search for cosmic ray-boosted dark matter (CRDM) with a combined 4.2 tonne-year exposure from the LUX-ZEPLIN (LZ) experiment. We observe no excess above the expected backgrounds and establish world-leading constraints on the spin-independent CRDM-nucleon cross section as small as 3.9 * 10^{-33} cm^2 at 90% confidence level for sub-GeV/c^2 masses.

1 data table

90% CL CRDM-nucleon cross sections


Partial Wave Analysis of $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}J/\psi$ and Cross Section Measurement of $e^{+}e^{-} \rightarrow \pi^{\pm}Z_{c}(3900)^{\mp}$ from 4.1271 to 4.3583 GeV

The BESIII collaboration Ablikim, Medina ; Achasov, Mikhail N. ; Adlarson, Patrik Adlarsson ; et al.
2025.
Inspire Record 2922807 DOI 10.17182/hepdata.166173

Based on 12.0 $\mathrm{fb^{-1}}$ of $e^{+}e^{-}$ collision data samples collected by the BESIII detector at center-of-mass energies from 4.1271 to 4.3583 GeV, a partial wave analysis is performed for the process $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}J/\psi$. The cross sections for the sub processes ${e^{+}e^{-}\rightarrow\pi^{+}Z_{c}(3900)^{-}+c.c.\rightarrow\pi^{+}\pi^{-}J/\psi}$, $f_{0}(980)(\rightarrow\pi^{+}\pi^{-})J/\psi$, and $(\pi^{+}\pi^{-})_{\rm{S\mbox{-}wave}} J/\psi$ are measured for the first time. The mass and width of the $Z_{c}(3900)^{\pm}$ are determined to be $3884.6\pm0.7\pm3.3$ MeV/$c^{2}$ and $37.2\pm1.3\pm6.6$ MeV, respectively. The first errors are statistical and the second systematic. The final state $(\pi^{+}\pi^{-})_{\rm{S\mbox{-}wave}} J/\psi$ dominates the process $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}J/\psi$. By analyzing the cross sections of $\pi^{\pm}Z_{c}(3900)^{\mp}$ and $f_{0}(980)J/\psi$, $Y(4220)$ has been observed. Its mass and width are determined to be $4225.8\pm4.2\pm3.1$ MeV/$c^{2}$ and $55.3\pm9.5\pm11.1$ MeV, respectively.

34 data tables

Data for $M(\pi^{\pm}J/\psi)$ [GeV/$c^{2}$] at energy 4.1271 after efficiency correction in FIG.F6. The sideband events are used as an estimate of the background events and subtracted from events in the signal region

Data for $M(\pi^{+}\pi^{-})$ [GeV/$c^{2}$] at energy 4.1271 after efficiency correction in FIG.F7. The sideband events are used as an estimate of the background events and subtracted from events in the signal region

Data for $M(\pi^{\pm}J/\psi)$ [GeV/$c^{2}$] at energy 4.1567 after efficiency correction in FIG.F6. The sideband events are used as an estimate of the background events and subtracted from events in the signal region

More…