We have examined charged multiplicities arising from p − p and p− p ̄ collisions over the range of center of mass energies, s , from 30 GeV to 1800 GeV. Results from Tevatron experiment E735 support the presence of double parton interactions. These processes can be seen to account for a large fraction of the increase in the non single diffraction inelastic cross section from energies of about 200 GeV to 1800 GeV.
Multiplicity distribution at centre-of-mass energy 1800 GeV.
Multiplicity distributions at centre-of-mass energy 300, 546 and 1000 GeV.
Analyzing powers for πp elastic scattering were measured using the CHAOS spectrometer at energies spanning the Δ(1232) resonance. This work presents π+ data at the pion kinetic energies 117, 130, 139, 155, 169, 180, 193, 218, 241, and 267 MeV and π− data at 87, 117, 193, and 241 MeV, covering an angular range of 50°<~θc.m.<~180° at the higher energies and 90°<~θc.m.<~180° at the lower energies. Unique features of the spectrometer acceptance were employed to reduce systematic errors. Single-energy phase shift analyses indicate the resulting S11 and S31 phases favor the results of the SM95 phase shift analysis over that of the older KH80 analysis.
Measurement of the PI+ analysing power at 117 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
Measurement of the PI+ analysing power at 139 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
Measurement of the PI- analysing power at 87 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
The electromagnetic form factors of the neutron in the time-like region have been measured for the first time, from the threshold up to q 2 ⋟ 6 GeV 2 . The neutron magnetic form factor turns out to be larger than the proton one; the angular distribution suggests that for the neutron, at variance with the proton case, electric and magnetic form factors could be different. Further measurements are also reported, concerning the proton form factors and the Σ Σ production, together with the multihadronic cross section and the J / Γ branching ratio into n n .
The uncertainty on the evaluated cross section is given by the quadratic combination of the following terms: the statistical uncertainty on the number of events, the statistical and systematic uncertainty on the luminosity (about 6PCT), the systematic uncertainty on the efficiency evaluation, dominated by the scanning efficiency contribution (about 15PCT). The SQRT(S) values with (C=NOMIN) and (C=SHIFT) correspond to the nominal energy and shifted energy analysis (see text of paper for details).
The uncertainty on the evaluated cross section is given by the quadratic combination of the following terms: the statistical uncertainty on the number of events, the statistical and systematic uncertainty on the luminosity (about 6PCT), the systematic uncertainty on the efficiency evaluation, dominated by the scanning efficiency contribution (about 15PCT). The NEUTRON formfactor value are calculated in two hypotheses: GE = GM and GE = 0.
The uncertainty on the evaluated cross section is given by the quadratic combination of the statistical and systematic uncertainties.
We have studied the two reactions 12C(π+,pp) and 12C(π+,ppp) in one experiment, using the CHAOS spectrometer at TRIUMF, at incident pion energies of 200, 240, and 280 MeV. In both cases, we are able to distinguish between reaction mechanisms involving only the detected protons, and those in which additional nucleons must have participated, on the basis of missing momentum. In the case of 12C(π+,ppp), we identify events due to the two step process of π+p quasielastic scattering followed by two-nucleon absorption. Estimates are made for the total cross sections for the various absorption mechanisms.
The total observed cross sections are not corrected for limited experimental acceptance. No errors are given. The comments (C=MNKO), (C=2NP), and (C=GT2NP) stand for multy nucleon knockout, 2 nucleons participated, and more than 2 nucleons participated, respectively.
This paper presents a large solid angle measurement of the positive pion absorption cross section on 4He and its decomposition into partial channels. The total absorption cross sections at incident pion kinetic energies of Tπ+=70, 118, 162, and 239 MeV are 35±5, 52±4, 51±5, and 27±2 mb, respectively. These values are lower than those reported in some previous experiments. At all pion energies a large fraction of the absorption cross section is due to multinucleon channels.
Data with (C=PRC) are taken from PR C56, 1872.
The total cross section of the 4He(π+,π−) reaction was measured for π+ kinetic energies ranging from 70 to 130 MeV using the CHAOS spectrometer at TRIUMF and a liquid 4He target. Around Tπ=90MeV, total cross sections exceed conventional model predictions by a factor of 3, whereas at Tπ=70MeV and for Tπ>130MeV the data are consistent with these calculations. An attempt is made to understand this behavior by assuming the production of the hypothetical d′ dibaryon.
Double charge exchange reaction. section.
A nonzero difference of the analyzing powers due to charge symmetry breaking has been measured with high precision in np elastic scattering at a neutron beam energy of 347 MeV. The neutron beam and proton target were alternately polarized for the measurements of An and Ap. A mirror-symmetric detection system was used to cancel geometry-related systematic errors. From fits of the measured asymmetry angular distributions over the range of 53.4°<~θcm<~86.9°, the difference in the zero-crossing angles of the analyzing powers was determined to be 0.438°±0.054°(stat.)±0.051°(syst.) in the center-of-mass system. Using the experimentally determined slope of the analyzing power dA/dθ=(−1.35±0.05)×10−2 deg−1 (c.m.), this is equivalent to ΔA≡An−Ap=[59±7(stat.)±7(syst.)±2(syst.)]×10−4. The shape of ΔA(θ) in the vicinity of the zero-crossing angle has also been extracted. Predictions of nucleon-nucleon interaction models based on meson exchange agree well with the results.
(C=N) or (C=P) stands for polarized beam or target.
The pion induced pion production reactions π±p→π+π±n were studied at projectile incident energies of 223, 243, 264, 284, and 305 MeV, using a cryogenic liquid hydrogen target. The Canadian High Acceptance Orbit Spectrometer was used to detect the two outgoing pions in coincidence. The experimental results are presented in the form of single differential cross sections. Total cross sections obtained by integrating the differential quantities are also reported. In addition, the invariant mass distributions from the (π+π−) channel were fitted to determine the parameters for an extended model based on that of Oset and Vicente-Vacas. We find the model parameters obtained from fitting the (π+π−) data do not describe the invariant mass distributions in the (π+π+) channel.
Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).
Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).
The reaction p ̄ p→K + K − π 0 was analysed for antiproton annihilations at rest at three hydrogen target densities. A strong dependence of the p ̄ p→φπ 0 yield on the quantum numbers of the initial state is observed. The branching ratio of the φπ 0 channel from the 3 S 1 initial state is more than 15 times larger than the one from the 1 P 1 state. A large apparent violation of the OZI rule for tensor meson production from p ̄ p -annihilations from the P -waves (1 ++ +2 ++ ) is observed: R exp ( f ′ 2 π 0 / f 2 π 0 )=(149±20)·10 −3 , significantly exceeding the OZI-rule prediction R =16·10 −3 .
Three densities (LH2, NTP, and LP) of the hydrogen target.
S- and P-wave in the initial PBAR P system.
S- and P-wave in the initial PBAR P system.
Associated strangeness production in the reactions γp → K + Λ and γp → K + Σ 0 was measured with the SAPHIR detector at the electron stretcher ring ELSA at Bonn. Data on total and differential cross sections and on hyperon polarizations are presented. The total cross section for Λ production shows a strong threshold enhancement whereas the Σ 0 data have a maximum at about E γ =1.45 GeV. Along with the angular decomposition of the differential cross section into polynomials, this suggests resonance production. However, the angular distributions of both hyperon polarizations vary only slightly with the photon energy. Λ and Σ 0 polarizations show opposite signs and change sign over the angular range.
Total cross section for the reaction GAMMA P --> K+ LAMBDA.
Total cross section for the reaction GAMMA P --> K+ SIGMA0.
Differential cross section for the reaction GAMMA P --> K+ LAMBDA in the GAMMA energy range 0.90 to 1.10 GeV in three energy bins.