We present a measurement of the electron charge asymmetry in ppbar->W+X->enu+X events at a center of mass energy of 1.96 TeV using 0.75 fb-1 of data collected with the D0 detector at the Fermilab Tevatron Collider. The asymmetry is measured as a function of the electron transverse momentum and pseudorapidity in the interval (-3.2, 3.2) and is compared with expectations from next-to-leading order calculations in perturbative quantum chromodynamics. These measurements will allow more accurate determinations of the proton parton distribution functions.
Folded electron charged asymmetry.
We present a measurement of the inclusive jet cross section in p-pbar collisions at sqrt{s}=1.96 TeV based on data collected by the CDF II detector with an integrated luminosity of 1.13 fb^-1. The measurement was made using the cone-based Midpoint jet clustering algorithm in the rapidity region of |y|<2.1. The results are consistent with next-to-leading-order perturbative QCD predictions based on recent parton distribution functions (PDFs), and are expected to provide increased precision in PDFs at high parton momentum fraction x. The results are also compared to the recent inclusive jet cross section measurement using the k_T jet clustering algorithm, and we find that the ratio of the cross sections measured with the two algorithms is in agreement with theoretical expectations over a large range of jet transverse momentum and rapidity.
Measured inclusive jet cross section as a function of jet transverse momentum in the absolute rapidity region < 0.1. The bin-by-bin correction factors from parton to hadron-level are also tabulated.
Measured inclusive jet cross section as a function of jet transverse momentum in the absolute rapidity region 0.1 to 0.7. The bin-by-bin correction factors from parton to hadron-level are also tabulated.
Measured inclusive jet cross section as a function of jet transverse momentum in the absolute rapidity region 0.7 to 1.1. The bin-by-bin correction factors from parton to hadron-level are also tabulated.
We present a measurement of the shapes of b-jets using 300 pb-1 of data obtained with the upgraded Collider Detector at Fermilab (CDF II) in p pbar collisions at center of mass energy sqrt{s}=1.96 TeV. This measurement covers a wide transverse momentum range, from 52 to 300 GeV/c. Samples of heavy-flavor enhanced jets together with inclusive jets are used to extract the average shapes of b-jets. The b-jets are expected to be broader than inclusive jets. Moreover, b-jets containing a single b-quark are expected to be narrower than those containing a b bbar pair from gluon splitting. The measured b-jet shapes are found to be significantly broader than expected from the PYTHIA and HERWIG Monte Carlo simulations. This effect may arise from an underestimation of the fraction of b-jets originating from gluon splitting in these simulations.
Measured integrated jet shapes for b-jets as a function of the jet cone parameter R with R0=0.7, for jet PT from 52 to 80 GeV.
Measured integrated jet shapes for b-jets as a function of the jet cone parameter R with R0=0.7, for jet PT from 80 to 104 GeV.
Measured integrated jet shapes for b-jets as a function of the jet cone parameter R with R0=0.7, for jet PT from 104 to 142 GeV.
The process $p\bar{p} \to \gamma$ + jet + X is studied using 1.0 $fb^{-1}$ of data collected by the D0 detector at the Fermilab Tevatron $p\bar{p}$ collider at a center-of-mass energy $\sqrt{s}$=1.96 TeV. Photons are reconstructed in the central rapidity region |$y^{\gamma}$|< 1.0 with transverse momenta in the range 30<$p^{\gamma}_T$<400 GeV while jets are reconstructed in either the central |$y^{jet}$|< 0.8 or forward 1.5 <|$y^{jet}$|<2.5 rapidity intervals with $p^{jet}_T$> 15 GeV. The differential cross section $d^3\sigma/dp^{\gamma}_T dy^\gamma dy^{jet}$ is measured as a function of $p^{\gamma}_T$ in four regions, differing by the relative orientations of the photon and the jet in rapidity. Ratios between the differential cross sections in each region are also presented. Next-to-leading order QCD predictions using different parameterizations of parton distribution functions and theoretical scale choices are compared to the data. The predictions do not simultaneously describe the measured normalization and Pt_gamma dependence of the cross section in any of the four measured regions.
Differential cross section for the region ABS(YRAP(JET)) < 0.8 and YRAP(GAMMA)*YRAP(JET) > 0.
Differential cross section for the region ABS(YRAP(JET)) < 0.8 and YRAP(GAMMA)*YRAP(JET) < 0.
Differential cross section for the region ABS(YRAP(JET)) 1.5 to 2.5 and YRAP(GAMMA)*YRAP(JET) > 0.
We measure the ttbar production cross section in ppbar collisions at sqrt{s}=1.96 TeV in the lepton+jets channel. Two complementary methods discriminate between signal and background, b-tagging and a kinematic likelihood discriminant. Based on 0.9 fb-1 of data collected by the D0 detector at the Fermilab Tevatron Collider, we measure sigma_ttbar=7.62+/-0.85 pb, assuming the current world average m_t=172.6 GeV. We compare our cross section measurement with theory predictions to determine a value for the top quark mass of 170+/-7 GeV.
The combined result for the TOP TOPBAR production cross section at top quark mass of 175 GeV.. The second DSYS error is the uncertainty on the luminosity.
The cross section for TOP TOPBAR production at the world average top quark mass of 172.6 GeV.. Errors contain both statistics and systematics.
We present a measurement of the fraction of inclusive $W$+jets events produced with net charm quantum number $\pm1$, denoted $W$+$c$-jet, in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV using approximately 1~fb$^{-1}$ of data collected by the D0 detector at the Fermilab Tevatron Collider. We identify the $W$+jets events via the leptonic $W$ boson decays. Candidate $W$+$c$-jet events are selected by requiring a jet containing a muon in association with a reconstructed $W$ boson and exploiting the charge correlation between this muon and $W$ boson decay lepton to perform a nearly model-independent background subtraction. We measure the fraction of $W$+$c$-jet events in the inclusive $W$+jets sample for jet $p_{T}>20$ GeV and pseudorapidity $|\eta|<2.5$ to be 0.074$\pm0.019$(stat.)$\pm^{0.012}_{0.014}$(syst.), in agreement with theoretical predictions. The probability that background fluctuations could produce the observed fraction of $W$+$c$-jet events is estimated to be $2.5\times 10^{-4}$, which corresponds to a 3.5 $\sigma$ statistical significance.
Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (E NU) channel for various jet PT ranges.
Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (MU NU) channel for various jet PT ranges.
Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (LEPTON NU) channel for various jet PT ranges.
We report on a measurement of the inclusive jet cross section in $p \bar{p}$ collisions at a center-of-mass energy $\sqrt s=$1.96 TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider corresponding to an integrated luminosity of 0.70 fb$^{-1}$. The data cover jet transverse momenta from 50 GeV to 600 GeV and jet rapidities in the range -2.4 to 2.4. Detailed studies of correlations between systematic uncertainties in transverse momentum and rapidity are presented, and the cross section measurements are found to be in good agreement with next-to-leading order QCD calculations.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.0 to 0.4 for cone radius R = 0.7.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.4 to 0.8 for cone radius R = 0.7.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.8 to 1.2 for cone radius R = 0.7.
We report the first measurement of the cross section for Z boson pair production at a hadron collider. This result is based on a data sample corresponding to 1.9 fb-1 of integrated luminosity from ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. In the llll channel, we observe three ZZ candidates with an expected background of 0.096^{+0.092}_{-0.063} events. In the llnunu channel, we use a leading-order calculation of the relative ZZ and WW event probabilities to discriminate between signal and background. In the combination of llll and llnunu channels, we observe an excess of events with a probability of $5.1\times 10^{-6}$ to be due to the expected background. This corresponds to a significance of 4.4 standard deviations. The measured cross section is sigma(ppbar -> ZZ) = 1.4^{+0.7}_{-0.6} (stat.+syst.) pb, consistent with the standard model expectation.
Measured cross section. Errors are combined statistics and systematics.
We present a measurement of the shape of the Z/gamma* boson transverse momentum (qT) distribution in ppbar -> Z/gamma* -> ee+X events at a center-of-mass energy of 1.96 TeV using 0.98 fb-1 of data collected with the D0 detector at the Fermilab Tevatron collider. The data are found to be consistent with the resummation prediction at low qT, but above the perturbative QCD calculation in the region of qT>30 GeV/c. Using events with qT<30 GeV/c, we extract the value of g2, one of the non-perturbative parameters for the resummation calculation. Data at large boson rapidity y are compared with the prediction of resummation and with alternative models that employ a resummed form factor with modifications in the small Bjorken x region of the proton wave function.
Normalized differential transverse momentum spectrum for Z0/GAMMA* events.
Correlation matrix for all rapidity Z bosons for the 12 bins used for PT < 30.
Normalized differential transverse momentum spectrum for Z0/GAMMA* events for the absolute rapidity region > 2 and PT < 30 GeV.
We present a measurement of the cross section for W-boson production in association with jets in pbarp collisions at sqrt(s)=1.96$ TeV. The analysis uses a data sample corresponding to an integrated luminosity of 320 pb^-1 collected with the CDF II detector. W bosons are identified in their electron decay channel and jets are reconstructed using a cone algorithm. For each W+>= n-jet sample ($n= 1 - 4$) we measure sigma(ppbar =>W+>=n$-jet)x BR(W => e nu) with respect to the transverse energy E_T of the n^th-highest E_T jet above 20 GeV, for a restricted W => e nu decay phase space. The cross sections, corrected for all detector effects, can be directly compared to particle level W+ jet(s) predictions. We present here comparisons to leading order and next-to-leading order predictions.
Measured ET differential cross section of the 1st jet in >= 1 JET plus W < E NU > events.
Measured ET differential cross section of the 2nd jet in >= 2 JET plus W < E NU > events.
Measured ET differential cross section of the 3rd jet in >= 3 JET plus W < E NU > events.