A search was made among ν μ charged current events collected in the NOMAD experiment for the reaction: ν μ +N→μ − +D ★+ + hadrons ↪ D 0 +π + ↪ K − +π + . A high purity D ★+ sample composed of 35 events was extracted. The D ★+ yield in ν μ charged current interactions was measured to be T =(0.79±0.17(stat.)±0.10(syst.))%. The mean fraction of the hadronic jet energy taken by the D ★+ is 0.67±0.02(stat.)±0.02(syst.). The distributions of the fragmentation variables z, P T 2 and x F for D ★+ are also presented.
Distribution in Feynman X.
Distribution in transverse momentum.
Distribution in fractional energy Z.
The reactions ee->ee+pi0+X and ee->ee+K0s+X are studied using data collected at LEP with the L3 detector at centre-of-mass energies between 189 and 202 GeV. Inclusive differential cross sections are measured as a function of the particle transverse momentum pt and the pseudo-rapidity. For pt < 1.5 GeV, the pi0 and K0s differential cross sections are described by an exponential, typical of soft hadronic processes. For pt > 1.5 GeV, the cross sections show the presence of perturbative QCD processes, described by a power-law. The data are compared to Monte Carlo predictions and to NLO QCD calculations.
The PI0 differential cross section as a function of PT.
The PI0 differential cross section as a function of pseudorapidity.
The K0S differential cross section as a function of PT.
A measurement of the derivative (d ln F_2 / d lnx)_(Q^2)= -lambda(x,Q^2) of the proton structure function F_2 is presented in the low x domain of deeply inelastic positron-proton scattering. For 5*10^(-5)<=x<=0.01 and Q^2>=1.5 GeV^2, lambda(x,Q^2) is found to be independent of x and to increase linearly with ln(Q^2).
No description provided.
No description provided.
No description provided.
Dijet cross sections in neutral current deep inelastic ep scattering have been measured in the range $10 < \Q2 < 10^4$ GeV$^2$ with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb$^{-1}$. The cross sections, measured in the Breit frame using the $\kt$ jet algorithm, are compared with next-to-leading-order perturbative QCD calculations using proton parton distribution functions. The uncertainties of the QCD calculations have been studied. The predictions are in reasonable agreement with the measured cross sections over the entire kinematic range.
Dijet cross section as a function of LOG10(Q**2).
Dijet cross section as a function of LOG10(MEAN(ET)**2/Q**2).
Dijet cross section as a function of LOG10(XI) for the ful Q**2 range.
The inclusive production of D^{*+-}(2010) mesons in deep-inelastic scattering is studied with the H1 detector at HERA. In the kinematic region 1<Q^2<100 GeV^2 and 0.05<y<0.7 an e^+p cross section for inclusive D^(*+-) meson production of 8.50+- 0.42 (stat.)^(+1.21)_(-1.00) (syst.) nb is measured in the visible range p_(tD^*)>1.5 GeV and |\eta_(D^*)|<1.5. Single and double differential inclusive D^(*+-) meson cross sections are compared to perturbative QCD calculations in two different evolution schemes. The charm contribution to the proton structure, F_2^c(x,Q^2), is determined by extrapolating the visible charm cross section to the full phase space. This contribution is found to rise from about 10% at Q^2 = 1.5 GeV^2 to more than 25% at Q^2 = 60 GeV^2 corresponding to x values ranging from 5*10^(-5) to 3*10^(-3)$.
The inclusive cross section for D*+- production. The second DSYS error is related to the changes in efficiency obtained by using different Monte Carlo generators and varying the model parameters.
Single differential visible cross section as a function of W.
Single differential visible cross section as a function of PT.
Three-jet production is studied for the first time in deep-inelastic positron-proton scattering. The measurement carried out with the H1 detector at HERA covers a large range of four-momentum transfer squared 5 < Q^2 < 5000 GeV^2 and invariant three-jet masses 25 < M_(3jet) < 140 GeV. Jets are defined by the inclusive k_T algorithm in the Breit frame. The size of the three-jet cross section and the ratio of the three-jet to the dijet cross section R_(3/2) are described over the whole phase space by the predictions of perturbative QCD in next-to-leading order. The shapes of angular jet distributions deviate significantly from a uniform population of the available phase space but are well described by the QCD calculation.
The inclusive 3-Jet cross section as a function of Q**2.
The ratio of 3 jets to 2 jets as a function of Q**2.
The inclusive 3-JET cross section as a function of Bjorken scaling variableX for the Q**2 range 5 to 100 GeV**2.
The cross section and the proton structure function F2 for neutral current deep inelastic e+p scattering have been measured with the ZEUS detector at HERA using an integrated luminosity of 30 pb-1. The data were collected in 1996 and 1997 at a centre-of-mass energy of 300 GeV. They cover the kinematic range 2.7 < Q^2 < 30000 GeV2 and 6.10^-5 < x < 0.65. The variation of F2 with x and Q2 is well described by next-to-leading-order perturbative QCD as implemented in the DGLAP evolution equations.
The electromagnetic structure function, F2(C=EM), in NC DIS scattering at Q**2 from 2.7 to 30000 GeV**2.
The corrections to the structure function, F2(C=EM), in NC DIS scattering at Q**2 from 2.7 to 30000 GeV**2.
The relative uncertainties in the reduced cross section. See text of paper for more details. There is an additional 2 PCT overall normalization error not included, andan addtional uncertainty of 1 PCT at low Q**2.. DUNC - Uncorrelated systematic error. Correlated Systematic Errors:. D1 - positron finding and efficiency. D2 - positron scattering angle - A. D3 - positron scattering angle - B. D4 - positron energy scale. D5 - hadronic energy measurment - FCAL. D6 - hadronic energy measurment - BCAL. D7 - hadronic energy measurment - RCAL. D8 - hadronic energy flow - A. D9 - background subtractions. D10 - hadronic energy flow - B.
We present a measurement of the polarization of Antilambda hyperons produced in nu_mu charged current interactions. The full data sample from the NOMAD experiment has been analyzed using the same V0 identification procedure and analysis method reported in a previous paper for the case of Lambda hyperons. The Antilambda polarization has been measured for the first time in a neutrino experiment. The polarization vector is found to be compatible with zero.
Lambdabar polarization in regions of Feynman X (XL).
Lambdabar polarization in regions of the Bjorken scaling variable X.
Dijet production has been studied in neutral current deep inelastic e+p scattering for 470 < Q**2 < 20000 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb**{-1}. Dijet differential cross sections are presented in a kinematic region where both theoretical and experimental uncertainties are small. Next-to-leading-order (NLO) QCD calculations describe the measured differential cross sections well. A QCD analysis of the measured dijet fraction as a function of Q**2 allows both a precise determination of alpha_s(M_Z) and a test of the energy-scale dependence of the strong coupling constant. A detailed analysis provides an improved estimate of the uncertainties of the NLO QCD cross sections arising from the parton distribution functions of the proton. The value of alpha_s(M_Z), as determined from the QCD fit, is alpha_s(M_Z) = 0.1166 +- 0.0019 (stat.) {+ 0.0024}_{-0.0033} (exp.)} {+ 0.0057}_{- 0.0044} (th.).
The differential dijet cross section dsig/dZP1.
The differential dijet cross section dsig/dlog10(x).
The differential dijet cross section dsig/dlog10(xi).
We have measured the charge asymmetry in like-sign dilepton yields from B^0 B^0-bar meson decays using the CLEO detector at the Cornell Electron Storage Ring. We find a_ll = [N(l+l+) - N(l-l-)]/[N(l+l+) + N[l-l-)] = +0.013 +/- 0.050 +/- 0.005 . We combine this result with a previous, independent measurement and obtain Re(epsilon_B)/(1+|epsilon_B|^2) = +0.0035 +/- 0.0103 +/- 0.0015 (uncertainties are statistical and systematic, respectively) for the CP impurity parameter, epsilon_B.
CONST(NAME=EPSILON) is CP impurity parameter.