Using data collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider, we measure the energy dependence of the $e^+e^- \to h_b(nP)\pi^+\pi^-$ $(n=1,2)$ cross sections from thresholds up to $11.02\,$GeV. We find clear $\Upsilon(10860)$ and $\Upsilon(11020)$ peaks with little or no continuum contribution. We study the resonant substructure of the $\Upsilon(11020) \to h_b(nP)\pi^+\pi^-$ transitions and find evidence that they proceed entirely via the intermediate isovector states $Z_b(10610)$ and $Z_b(10650)$. The relative fraction of these states is loosely constrained by the current data: the hypothesis that only $Z_b(10610)$ is produced is excluded at the level of 3.3 standard deviations, while the hypothesis that only $Z_b(10650)$ is produced is not excluded at a significant level.
Center-of-mass energies, integrated luminosities and Born cross sections for all energy points. The first uncertainty in the energy is uncorrelated, the second is correlated. The three uncertainties in the cross sections are statistical, uncorrelated systematic and correlated systematic.
The process $e^+e^- \to \gamma\chi_{cJ}$ ($J$=1, 2) is studied via initial state radiation using 980 fb$^{-1}$ of data at and around the $\Upsilon(nS)$ ($n$=1, 2, 3, 4, 5) resonances collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. No significant signal is observed except from $\psi(2S)$ decays. Upper limits on the cross sections between $\sqrt{s}=3.80$ and $5.56~{\rm GeV}$ are determined at the 90% credibility level, which range from few pb to a few tens of pb. We also set upper limits on the decay rate of the vector charmonium [$\psi(4040$), $\psi(4160)$, and $\psi(4415)$] and charmoniumlike [$Y(4260)$, $Y(4360)$, and $Y(4660)$] states to $\gamma\chi_{cJ}$.
Upper limits on the $e^+e^-\to \gamma\chi_{cJ}$ cross sections.
Upper limits on $\Gamma_{ee} \times \mathcal{B}$ at the 90$\%$ C.L.
Upper limits on branching fractions $\mathcal{B}(R \to \gamma \chi_{cJ})$ at the 90$\%$ C.L.
We report measurement of the cross section of $e^+e^-\to \pi^+\pi^-\psi(2S)$ between 4.0 and $5.5 {\rm GeV}$, based on an analysis of initial state radiation events in a $980 \rm fb^{-1}$ data sample recorded with the Belle detector. The properties of the $Y(4360)$ and $Y(4660)$ states are determined. Fitting the mass spectrum of $\pi^+\pi^-\psi(2S)$ with two coherent Breit-Wigner functions, we find two solutions with identical mass and width but different couplings to electron-positron pairs: $M_{Y(4360)} = (4347\pm 6\pm 3) {\rm MeV}/c^2$, $\Gamma_{Y(4360)} = (103\pm 9\pm 5) {\rm MeV}$, $M_{Y(4660)} = (4652\pm10\pm 8) {\rm MeV}/c^2$, $\Gamma_{Y(4660)} = (68\pm 11\pm 1) \rm MeV$; and ${\cal{B}}[Y(4360)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4360)}^{e^+e^-} = (10.9\pm 0.6\pm 0.7) \rm eV$ and ${\cal{B}}[Y(4660)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4660)}^{e^+e^-} = (8.1\pm 1.1\pm 0.5) \rm eV$ for one solution; or ${\cal{B}}[Y(4360)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4360)}^{e^+e^-} = (9.2\pm 0.6\pm 0.6) \rm eV$ and ${\cal{B}}[Y(4660)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4660)}^{e^+e^-} = (2.0\pm 0.3\pm 0.2) \rm eV$ for the other. Here, the first errors are statistical and the second systematic. Evidence for a charged charmoniumlike structure at $4.05 {\rm GeV}/c^2$ is observed in the $\pi^{\pm}\psi(2S)$ intermediate state in the $Y(4360)$ decays.
Measured $e^+e^- \to \pi^+\pi^-\psi(2S)$ cross section for center of mass energy ($E_{\rm cm}$) from 4.0 GeV/$c^2$ to 5.5 GeV/$c^2$. The errors are the sums of statistical errors of signal and background events and the systematic errors.
We report results on studies of the e+e- annihilation into three-body Y(nS)pi+pi- (n=1,2,3) final states including measurements of cross sections and the full amplitude analysis. The cross sections measured at sqrt(s)=10.865 GeV and corrected for the initial state radiation are sigma(e+e-=>Y(1S)pi+pi-)=(2.27+-0.12+-0.14) pb, sigma(e+e-=>Y(2S)pi+pi-)=(4.07+-0.16+-0.45) pb, and sigma(e+e-=>Y(3S)pi+pi-)=(1.46+-0.09+-0.16) pb. Amplitude analysis of the three-body Y(nS)pi+pi- final states strongly favors I^G(J^P)=1^+(1^+) quantum-number assignments for the two bottomonium-like Zb+- states, recently observed in the Y(nS)pi+- and hb(mP)pi+- (m=1,2) decay channels. The results are obtained with a $121.4 1/fb data sample collected with the Belle detector at the KEKB asymmetric-energy e+e- collider.
The measured cross section and visible cross section for the three-body transition E+ E- --> UPSILON(1S) PI+ PI-.
The measured cross section and visible cross section for the three-body transition E+ E- --> UPSILON(2S) PI+ PI-.
The measured cross section and visible cross section for the three-body transition E+ E- --> UPSILON(3S) PI+ PI-.
Measurements of inclusive production of the Lambda, Xi- and Xi*(1530) baryons in two-photon collisions with the L3 detector at LEP are presented. The inclusive differential cross sections for Lambda and Xi- are measured as a function of the baryon transverse momentum, pt, and pseudo-rapidity, eta. The mean number of Lambda, Xi- and Xi*(1530) baryons per hadronic two-photon event is determined in the kinematic range 0.4 GeV < pt< 2.5 GeV, |eta| < 1.2. Overall agreement with the theoretical models and Monte Carlo predictions is observed. A search for inclusive production of the pentaquark theta+(1540) in two-photon collisions through the decay theta+ -> proton K0s is also presented. No evidence for production of this state is found.
Differential cross section for LAMBDA production.
Differential cross section for LAMBDA production.
Differential cross section for XI- production.
Hadron production and lepton-pair production in e+e- collisions are studied with data collected with the L3 detector at LEP at centre-of-mass energies sqrt{s}=192-208GeV. Using a total integrated luminosity of 453/pb, 36057 hadronic events and 12863 lepton-pair events are selected. The cross sections for hadron production and lepton-pair production are measured for the full sample and for events where no high-energy initial-state-radiation photon is emitted prior to the collisions. Lepton-pair events are further investigated and forward-backward asymmetries are measured. Finally, the differential cross sections for electron-positron pair-production is determined as a function of the scattering angle. An overall good agreement is found with Standard Model predictions.
Measured hadron cross section for the inclusive data sample.
Measured hadron cross section for the high-energy data sample.
Measured MU+ MU- cross section for the inclusive data sample.
Exclusive rho+rho- production in two-photon collisions between a quasi-real photon, gamma, and a mid-virtuality photon, gamma*, is studied with data collected at LEP at centre-of-mass energies root(s)=183-209GeV with a total integrated luminosity of 684.8pb^-1. The cross section of the gamma gamma* -> rho+ rho- process is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 0.2GeV^2 < Q^2 <0.85GeV^2 and 1.1GeV < W_gg < 3GeV. These results, together with previous L3 measurements of rho0 rho0 and rho+ rho- production, allow a study of the gamma gamma* -> rho rho process over the Q^2-region 0.2GeV^2 < Q^2 < 30 GeV^2.
Production cross section as a function of Q**2. Differential cross sectionsare corrected to the centre of each bin.
Production cross section for two-photon data as a function of Q**2.
Production cross section as a function of W.
The e+e- -> e+e- hadrons reaction, where one of the two electrons is detected in a low polar-angle calorimeter, is analysed in order to measure the hadronic photon structure function F2gamma . The full high-energy and high-luminosity data set, collected with the L3 detector at centre-of-mass energies 189-209GeV, corresponding to an integrated luminosity of 608/pb is used. The Q^2 range 11-34GeV^2 and the x range 0.006-0.556 are considered. The data are compared with recent parton density functions.
Cross sections DELTA(SIG)/DELTA(X) in the Q**2 range 11 TO 14 GeV**2.
Cross sections DELTA(SIG)/DELTA(X) in the Q**2 range 14 TO 20 GeV**2.
Cross sections DELTA(SIG)/DELTA(X) in the Q**2 range 20 TO 34 GeV**2.
Inclusive jet production, e+e- -> e+e- \ee$ jet X, is studied using 560/pb of data collected at LEP with the L3 detector at centre-of-mass energies between 189 and 209 GeV. The inclusive differential cross section is measured using a k_t jet algorithm as a function of the jet transverse momentum, pt, in the range 3<pt<50 GeV for a pseudorapidity, eta, in the range -1<eta<1. This cross section is well represented by a power law. For high pt, the measured cross section is significantly higher than the NLO QCD predictions, as already observed for inclusive charged and neutral pion production.
No description provided.
Exclusive rho^0 rho^0 production in two-photon collisions between a quasi-real and a mid-virtuality photon is studied with data collected at LEP at centre-of-mass energies 183GeV < sqrt{s} < 209GeV with a total integrated luminosity of 684.8/pb. The cross section of the process gamma gamma* -> rho^0 rho^0 is determined as a function of the photon virtuality, q^2, and the two-photon centre-of-mass energy, Wgg, in the kinematic region: 0.2GeV^2 < q^2 < 0.85GeV^2 and 1.1GeV < Wgg < 3GeV.
Production cross section as a function of Q**2. Differential cross sectionsare corrected to the centre of each bin.
Production cross section for two-photon data as a function of Q**2.
Production cross section as a function of W.