Measurement of the proton structure function F2 and sigma(tot)(gamma* p) at low Q**2 and very low x at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 407 (1997) 432-448, 1997.
Inspire Record 445553 DOI 10.17182/hepdata.44513

A small electromagnetic sampling calorimeter, installed in the ZEUS experiment in 1995, significantly enhanced the acceptance for very low x and low Q^2 inelastic neutral current scattering, e^{+}p \to e^{+}X, at HERA. A measurement of the proton structure function F_2 and the total virtual photon-proton (\gamma^*p) cross-section is presented for 0.11 \le Q^{2} \le 0.65 GeV^2 and 2 \times 10^{-6} \le x \le 6 \times 10^{-5}, corresponding to a range in the \gamma^{*}p c.m. energy of 100 \le W \le 230 GeV. Comparisons with various models are also presented.

8 data tables

Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.

Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.

Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.

More…

D* production in deep inelastic scattering at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 407 (1997) 402-418, 1997.
Inspire Record 443964 DOI 10.17182/hepdata.44585

This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel $D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ $ (+ c.c.) has been used in the study. The $e^+p$ cross section for inclusive D^{*\pm} production with $5<Q^2<100 GeV^2$ and $y<0.7$ is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {$1.3<p_T(D^{*\pm})<9.0$ GeV and $| \eta(D^{*\pm}) |<1.5$}. Differential cross sections as functions of p_T(D^{*\pm}), $\eta(D^{*\pm}), W$ and $Q^2$ are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and $\eta$(D^{*\pm}), the charm contribution $F_2^{c\bar{c}}(x,Q^2)$ to the proton structure function is determined for Bjorken $x$ between 2 $\cdot$ 10$^{-4}$ and 5 $\cdot$ 10$^{-3}$.

11 data tables

No description provided.

Integrated charm cross sections in two Q**2 regions.

Distribution of the fractional momentum of the D* in the gamma*-p system.

More…

Measurement of elastic J / psi photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Z.Phys.C 75 (1997) 215-228, 1997.
Inspire Record 442537 DOI 10.17182/hepdata.44626

The reaction gamma p -> J/Psi p has been studied in ep interactions using the ZEUS detector at HERA. The cross section for elastic J/Psi photoproduction has been measured as a function of the photon-proton centre of mass energy W in the range 40 < W < 140 GeV at a median photon virtuality Q^2 of 5*10^{-5} GeV^2. The photoproduction cross section, sigma_{gamma p -> J/Psi p}, is observed to rise steeply with W. A fit to the data presented in this paper to determine the parameter $\delta$ in the form sigma_{gamma p -> J/Psi p} \propto W^{\delta} yields the value \delta = 0.92 \pm 0.14 \pm 0.10. The differential cross section dsigma/d|t| is presented over the range |t| < 1.0 GeV^2 where t is the square of the four-momentum exchanged at the proton vertex. d\sigma/d|t| falls exponentially with a slope parameter of 4.6 \pm 0.4 (+0.4-0.6) GeV^{-2}. The measured decay angular distributions are consistent with s-channel helicity conservation.

9 data tables

Data from the electron channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.

Data from the muon channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.

Data from the electron channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.

More…

Study of photon dissociation in diffractive photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Z.Phys.C 75 (1997) 421-435, 1997.
Inspire Record 442287 DOI 10.17182/hepdata.10933

Diffractive dissociation of quasi-real photons at a photon-proton centre of mass energy of W 200 GeV is studied with the ZEUS detector at HERA. The process under consideration is gamma p -> X N, where X is the diffractively dissociated photon system of mass M_X and N is either a proton or a nucleonic system with mass M_N < 2GeV. The cross section for this process in the interval 3 < M_X < 24 GeV relative to the total photoproduction cross section was measured to be sigma~partial_D / sigma_tot = 6.2 +- 0.2(stat) +- 1.4(syst)%. After extrapolating this result to the mass interval of m_phi~2 < M_X~2 < 0.05 W~2 and correcting it for proton dissociation, the fraction of the total cross section attributed to single diffractive photon dissociation, gamma p -> X p, is found to be sigma_SD / sigma_tot = 13.3 +- 0.5(stat) +- 3.6(syst)%. The mass spectrum of the dissociated photon system in the interval 8 < M_X < 24 GeV can be described by the triple pomeron (PPP) diagram with an effective pomeron intercept of alpha_P(0) = 1.12 +- 0.04(stat) +- 0.08(syst). The cross section for photon dissociation in the range 3 < M_X < 8 GeV is significantly higher than that expected from the triple pomeron amplitude describing the region 8 < M_X < 24 GeV. Assuming that this discrepancy is due to a pomeron-pomeron-reggeon (PPR) term, its contribution to the diffractive cross section in the interval 3 < M_X < 24 GeV is estimated to be f_PPR = 26 +- 3(stat) +- 12(syst)%.

4 data tables

Fraction of the total photoproduction cross section attributed to the photon dissociation.

The fraction of the total photoproduction cross section due to single dif fractive photon dissociation, in the mass range M_phi**2 < M_DD < X >**2 < 0.05 *W**2.

Identification of the diffractive processes was performed on the basis of the shape of reconstructed hadronic mass spectrum. No rapidity-gap was required.

More…