Date

Measurement of D-meson production versus multiplicity in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Adam, J. ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 08 (2016) 078, 2016.
Inspire Record 1423072 DOI 10.17182/hepdata.73775

The measurement of prompt D-meson production as a function of multiplicity in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the LHC is reported. D$^0$, D$^+$ and D$^{*+}$ mesons are reconstructed via their hadronic decay channels in the centre-of-mass rapidity range $-0.96< y_{\mathrm{cms}}<0.04$ and transverse momentum interval $1

5 data tables

Average $Q_{\rm pPb}$ of D$^{0}$, D$^{+}$ and D*$^{+}$ mesons for the sum of particles and antiparticles in several multiplicity and PT(D) intervals for p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV as a function of the multiplicity at central rapidity evaluated with the ZNA estimator. The values are reported together with their uncertainties, which are quoted as statistical followed by systematic uncertainties. Normalisation uncertainty is not quoted and amounts to $\pm 0.07$, $\pm 0.05$, $\pm 0.07$ and $\pm 0.08$ for the 0-20%, 20-40%, 40-60% and 60-100% intervals, respectively.

Average $Q_{\rm pPb}$ of D$^{0}$, D$^{+}$ and D*$^{+}$ mesons for the sum of particles and antiparticles in several multiplicity and PT(D) intervals for p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV as a function of the multiplicity at central rapidity evaluated with the CL1 estimator. The values are reported together with their uncertainties, which are quoted as statistical followed by systematic uncertainties. Normalisation uncertainty is not quoted and amounts to $\pm 0.05$, $\pm 0.05$, $\pm 0.07$ and $\pm 0.23$ for the 0-20%, 20-40%, 40-60% and 60-100% intervals, respectively.

Average $Q_{\rm pPb}$ of D$^{0}$, D$^{+}$ and D*$^{+}$ mesons for the sum of particles and antiparticles in several multiplicity and PT(D) intervals for p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV as a function of the multiplicity at central rapidity evaluated with the V0A estimator. The values are reported together with their uncertainties, which are quoted as statistical followed by systematic uncertainties. Normalisation uncertainty is not quoted and amounts to $\pm 0.05$, $\pm 0.05$, $\pm 0.06$ and $\pm 0.22$ for the 0-20%, 20-40%, 40-60% and 60-100% intervals, respectively.

More…

Measurement of the Z gamma to nu nu-bar gamma production cross section in pp collisions at sqrt(s) = 8 TeV and limits on anomalous Z-Z-gamma and Z-gamma-gamma trilinear gauge boson couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 760 (2016) 448-468, 2016.
Inspire Record 1423069 DOI 10.17182/hepdata.74458

A measurement of the Z gamma to nu nu-bar gamma production cross section in pp collisions at sqrt(s) = 8 TeV is presented, using data corresponding to an integrated luminosity of 19.6 inverse femtobarns collected with the CMS detector at the LHC. This measurement is based on the observation of events with large missing energy and with a single photon with transverse momentum above 145 GeV and absolute pseudorapidity in the range |eta| < 1.44. The measured Z gamma to nu nu-bar gamma production cross section, 52.7 +/- 2.1(stat) +/- 6.4 (syst) +/- 1.4 (lumi) fb, agrees well with the standard model prediction of 50.0 +2.4 -2.2 fb. A study of the photon transverse momentum spectrum yields the most stringent limits to date on the anomalous Z-Z-gamma and Z-gamma-gamma trilinear gauge boson couplings.

2 data tables

Z gamma -> nu nu gamma production cross section.

One-dimensional 95% CL limits on ZVgamma anomalous trilinear gauge couplings from the Z gamma -> nu nu gamma channel.


Search for supersymmetry in the multijet and missing transverse momentum final state in pp collisions at 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 758 (2016) 152-180, 2016.
Inspire Record 1422778 DOI 10.17182/hepdata.76545

A search for new physics is performed based on all-hadronic events with large missing transverse momentum produced in proton-proton collisions at sqrt(s) = 13 TeV. The data sample, corresponding to an integrated luminosity of 2.3 inverse femtobarns, was collected with the CMS detector at the CERN LHC in 2015. The data are examined in search regions of jet multiplicity, tagged bottom quark jet multiplicity, missing transverse momentum, and the scalar sum of jet transverse momenta. The observed numbers of events in all search regions are found to be consistent with the expectations from standard model processes. Exclusion limits are presented for simplified supersymmetric models of gluino pair production. Depending on the assumed gluino decay mechanism, and for a massless, weakly interacting, lightest neutralino, lower limits on the gluino mass from 1440 to 1600 GeV are obtained, significantly extending previous limits.

7 data tables

Expected prefit background and observed event counts for Njet = 4-6.

Expected prefit background and observed event counts for Njet = 7-8.

Expected prefit background and observed event counts for Njet > 9.

More…

Measurement of dijet azimuthal decorrelation in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 536, 2016.
Inspire Record 1421646 DOI 10.17182/hepdata.74207

A measurement of the decorrelation of azimuthal angles between the two jets with the largest transverse momenta is presented for seven regions of leading jet transverse momentum up to 2.2 TeV. The analysis is based on the proton-proton collision data collected with the CMS experiment at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 inverse femtobarns. The dijet azimuthal decorrelation is caused by the radiation of additional jets and probes the dynamics of multijet production. The results are compared to fixed-order predictions of perturbative quantum chromodynamics (QCD), and to simulations using Monte Carlo event generators that include parton showers, hadronization, and multiparton interactions. Event generators with only two outgoing high transverse momentum partons fail to describe the measurement, even when supplemented with next-to-leading-order QCD corrections and parton showers. Much better agreement is achieved when at least three outgoing partons are complemented through either next-to-leading-order predictions or parton showers. This observation emphasizes the need to improve predictions for multijet production.

7 data tables

Normalized dijet cross section differential in DeltPhi_{dijet} for 200<p_{T}^{max}<300 GeV region. The error bars on the data points include statistical and systematic uncertainties. The (sys) error is the total systematic error.

Normalized dijet cross section differential in DeltPhi_{dijet} for 300<p_{T}^{max}<400 GeV region. The error bars on the data points include statistical and systematic uncertainties. The (sys) error is the total systematic error.

Normalized dijet cross section differential in DeltPhi_{dijet} for 400<p_{T}^{max}<500 GeV region. The error bars on the data points include statistical and systematic uncertainties. The (sys) error is the total systematic error.

More…

Measurement of double-differential muon neutrino charged-current interactions on C$_8$H$_8$ without pions in the final state using the T2K off-axis beam

The T2K collaboration Abe, Ko ; Andreopoulos, Costas ; Antonova, Maria ; et al.
Phys.Rev.D 93 (2016) 112012, 2016.
Inspire Record 1421157 DOI 10.17182/hepdata.77052

We report the measurement of muon neutrino charged-current interactions on carbon without pions in the final state at the T2K beam energy using 5.734$\times10^{20}$ protons on target. For the first time the measurement is reported as a flux-integrated, double-differential cross-section in muon kinematic variables ($\cos\theta_\mu$, $p_\mu$), without correcting for events where a pion is produced and then absorbed by final state interactions. Two analyses are performed with different selections, background evaluations and cross-section extraction methods to demonstrate the robustness of the results against biases due to model-dependent assumptions. The measurements compare favorably with recent models which include nucleon-nucleon correlations but, given the present precision, the measurement does not solve the degeneracy between different models. The data also agree with Monte Carlo simulations which use effective parameters that are tuned to external data to describe the nuclear effects. The total cross-section in the full phase space is $\sigma = (0.417 \pm 0.047 \text{(syst)} \pm 0.005 \text{(stat)})\times 10^{-38} \text{cm}^2$ $\text{nucleon}^{-1}$ and the cross-section integrated in the region of phase space with largest efficiency and best signal-over-background ratio ($\cos\theta_\mu>0.6$ and $p_\mu > 200$ MeV) is $\sigma = (0.202 \pm 0.0359 \text{(syst)} \pm 0.0026 \text{(stat)}) \times 10^{-38} \text{cm}^2$ $\text{nucleon}^{-1}$.

10 data tables

Total signal cross-section per nucleon integrated over all the muon kinematics phase space in Analysis I.

Results of the double differential cross-section measurement bin-by-bin in Analysis I.

Covariance matrix for shape systematics error in Analysis I.

More…

$\rm{J}/\psi$ production at low transverse momentum in p+p and d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 93 (2016) 064904, 2016.
Inspire Record 1420183 DOI 10.17182/hepdata.73526

We report on the measurement of $\rm{J}/\psi$ production in the dielectron channel at mid-rapidity (|y|<1) in p+p and d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider. The transverse momentum $p_{T}$ spectra in p+p for $p_{T}$ < 4 GeV/c and d+Au collisions for $p_{T}$ < 3 GeV/c are presented. These measurements extend the STAR coverage for $\rm{J}/\psi$ production in p+p collisions to low $p_{T}$. The $$ from the measured $\rm{J}/\psi$ invariant cross section in p+p and d+Au collisions are evaluated and compared to similar measurements at other collision energies. The nuclear modification factor for $\rm{J}/\psi$ is extracted as a function of $p_{T}$ and collision centrality in d+Au and compared to model calculations using the modified nuclear Parton Distribution Function and a final-state $\rm{J}/\psi$ nuclear absorption cross section.

6 data tables

The mean square of $p_T$.

Nuclear absorption cross section.

The nuclear modicifation factor vs. $p_T$ for $J\psi$ with |y| < 1 in 0-100 percent central d+Au collisions.

More…

Charged-particle distributions in $\sqrt{s}=13$ TeV $pp$ interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 758 (2016) 67-88, 2016.
Inspire Record 1419652 DOI 10.17182/hepdata.72491

Charged-particle distributions are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 $\mu$b$^{-1}$, recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. The measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particle satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. The results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Carlo event generators.

18 data tables

The average charged-particle multiplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

The extrapolated average charged-particle multiplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

Charged-particle multiplicities in proton-proton collisions at a centre-of-mass energy of 13000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

More…

Measurement of the charged-particle multiplicity inside jets from $\sqrt{s}=8$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 322, 2016.
Inspire Record 1419070 DOI 10.17182/hepdata.72257

The number of charged particles inside jets is a widely used discriminant for identifying the quark or gluon nature of the initiating parton and is sensitive to both the perturbative and non-perturbative components of fragmentation. This paper presents a measurement of the average number of charged particles with $p_\text{T}>500$ MeV inside high-momentum jets in dijet events using 20.3 fb$^{-1}$ of data recorded with the ATLAS detector in $pp$ collisions at $\sqrt{s}=8$ TeV collisions at the LHC. The jets considered have transverse momenta from 50 GeV up to and beyond 1.5 TeV. The reconstructed charged-particle track multiplicity distribution is unfolded to remove distortions from detector effects and the resulting charged-particle multiplicity is compared to several models. Furthermore, quark and gluon jet fractions are used to extract the average charged-particle multiplicity for quark and gluon jets separately.

12 data tables

The average charged particle multiplicity for the more forward jet and a charged particle threshold of 0.5 GeV as a function of the jet transverse momentum.

The average charged particle multiplicity for the more forward jet and a charged particle threshold of 2 GeV as a function of the jet transverse momentum.

The average charged particle multiplicity for the more forward jet and a charged particle threshold of 5 GeV as a function of the jet transverse momentum.

More…

Version 2
Anisotropic flow of charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 116 (2016) 132302, 2016.
Inspire Record 1419244 DOI 10.17182/hepdata.72886

We report the first results of elliptic ($v_2$), triangular ($v_3$) and quadrangular flow ($v_4$) of charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the CERN Large Hadron Collider. The measurements are performed in the central pseudorapidity region $|\eta|<0.8$ and for the transverse momentum range $0.2

11 data tables

Centrality dependence of $v_2$, with two- and multi-particle correlations, integrated over the $p_{\rm T}$ range 0.2 < $p_{\rm T}$ < 5.0 GeV/$c$, at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.

Centrality dependence of $v_3$ and $v_4$, with two-particle correlations, integrated over the $p_{\rm T}$ range 0.2 < $p_{\rm T}$ < 5.0 GeV/c, at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.

Centrality dependence of $v_2$, with two- and multi-particle correlations, integrated over the $p_{\rm T}$ range 0.2 < $p_{\rm T}$ < 5.0 GeV/c, at $\sqrt{s_{\rm NN}}$ = 2.76 TeV.

More…

Rapidity and centrality dependence of particle production for identified hadrons in Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV

The BRAHMS collaboration Arsene, I.C. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.C 94 (2016) 014907, 2016.
Inspire Record 1419279 DOI 10.17182/hepdata.89453

The BRAHMS collaboration has measured transverse momentum spectra of pions, kaons, protons and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV. As the collisions become more central the collective radial flow increases while the temperature of kinetic freeze-out decreases. The temperature is lower and the radial flow weaker at forward rapidity. Pion and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are suppressed for central collisions relative to scaled $p+p$ collisions. This suppression, which increases as the collisions become more central is consistent with jet quenching models and is also present with comparable magnitude at forward rapidity. At such rapidities initial state effects may also be present and persistence of the meson suppression to high rapidity may reflect a combination of jet quenching and nuclear shadowing. The ratio of protons to mesons increases as the collisions become more central and is largest at forward rapidities.

138 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

More…