Showing 10 of 12 results
A search for pseudoscalar or scalar bosons decaying to a top quark pair ($\mathrm{t\bar{t}}$) in final states with one or two charged leptons is presented. The analyzed proton-proton collision data was recorded at $\sqrt{s}$ = 13 TeV by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. The invariant mass $m_\mathrm{t\bar{t}}$ of the reconstructed $\mathrm{t\bar{t}}$ system and variables sensitive to its spin and parity are used to discriminate against the standard model $\mathrm{t\bar{t}}$ background. Interference between pseudoscalar or scalar boson production and the standard model $\mathrm{t\bar{t}}$ continuum is included, leading to peak-dip structures in the $m_\mathrm{t\bar{t}}$ distribution. An excess of the data above the background prediction, based on perturbative quantum chromodynamics (QCD) calculations, is observed near the kinematic $\mathrm{t\bar{t}}$ production threshold, while good agreement is found for high $m_\mathrm{t\bar{t}}$. The data are consistent with the background prediction if the contribution from the production of a color-singlet ${}^1\mathrm{S}_0^{[1]}$$\mathrm{t\bar{t}}$ quasi-bound state $η_\mathrm{t}$, predicted by nonrelativistic QCD, is added. Upper limits at 95% confidence level are set on the coupling between the pseudoscalar or scalar bosons and the top quark for boson masses in the range 365$-$1000 GeV, relative widths between 0.5 and 25%, and two background scenarios with or without $η_\mathrm{t}$ contribution.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
A search for the resonant production of a heavy scalar $X$ decaying into a Higgs boson and a new lighter scalar $S$, through the process $X \to S(\to bb) H(\to \gamma\gamma)$, where the two photons are consistent with the Higgs boson decay, is performed. The search is conducted using an integrated luminosity of 140 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed over the mass range 170 $\leq$$m_{X}$$\leq$ 1000 GeV and 15 $\leq$$m_{S}$$\leq$ 500 GeV. Parameterised neural networks are used to enhance the signal purity and to achieve continuous sensitivity in a domain of the ($m_{X}$, $m_{S}$) plane. No significant excess above the expected background is found and 95% CL upper limits are set on the cross section times branching ratio, ranging from 39 fb to 0.09 fb. The largest deviation from the background-only expectation occurs for ($m_{X}$, $m_{S}$) = (575, 200) GeV with a local (global) significance of 3.5 (2.0) standard deviations.
Number of events for the 2 b-jet process category obtained from a background-only fit to data in the signal region and sideband. In the signal region the yield in the most signal-like bin of the PNN distribution, parameterised to the signal point mass (mX, mS) = (250, 100) GeV, is also provided. The uncertainties are symmetrised around the central value. The uncertainty in the total background is calculated taking correlations between the individual contributions into account. For the single Higgs boson processes, 'Other' includes the following production modes: VBF, WH, tHq, and tHW.
Number of events for the 1 b-jet process category obtained from a background-only fit to data in the signal region and sideband. In the signal region the yield in the most signal-like bin of the PNN distribution, parameterised to the signal point mass (mX, mS) = (1000, 70) GeV, is also provided. The uncertainties are symmetrised around the central value. The uncertainty in the total background is calculated taking correlations between the individual contributions into account. For the single Higgs boson processes, 'Other' includes the following production modes: VBF, WH, tHq, and tHW.
Expected and observed 95% CL upper limits on the signal cross section times the branching ratio of X → SH → b b $\gamma \gamma$ shown in the (mX, mS) plane, for each evaluated point. The values of the expected limit one and two standard deviations from the nominal value are also shown. The band at mS = 125 GeV is not included as these signal points are equivalent to those already probed in Phys. Rev. D 106 (2022) 052001.
Local observed significance for signal discovery at different (mX, mS). The points show where the significance was evaluated. The band at mS = 125 GeV is not shown as those points are equivalent to those already probed in Phys. Rev. D 106 (2022) 052001.
Signal region yield for each of the simulated signal samples and interpolated signal points that were analyzed in the 1 b-jet Signal Region, normalized to a cross section of 1 fb. The signal region yields for one of the signals is found in Table 2 of the paper.
Signal region yield for each of the simulated signal samples and interpolated signal points that were analyzed in the 2 b-jet Signal Region, normalized to a cross section of 1 fb. The signal region yields for one of the signals is found in Table 2 of the paper.
A search for a heavy CP-odd Higgs boson, $A$, decaying into a $Z$ boson and a heavy CP-even Higgs boson, $H$, is presented. It uses the full LHC Run 2 dataset of $pp$ collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector, corresponding to an integrated luminosity of $140$ fb$^{-1}$. The search for $A\to ZH$ is performed in the $\ell^+\ell^- t\bar{t}$ and $\nu\bar{\nu}b\bar{b}$ final states and surpasses the reach of previous searches in different final states in the region with $m_H>350$ GeV and $m_A>800$ GeV. No significant deviation from the Standard Model expectation is found. Upper limits are placed on the production cross-section times the decay branching ratios. Limits with less model dependence are also presented as functions of the reconstructed $m(t\bar{t})$ and $m(b\bar{b})$ distributions in the $\ell^+\ell^- t\bar{t}$ and $\nu\bar{\nu}b\bar{b}$ channels, respectively. In addition, the results are interpreted in the context of two-Higgs-doublet models.
<b><u>Overview of HEPData Record</u></b><br> <b>Upper limits on cross-sections:</b> <ul> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20ggF,%20tanbeta=0.5">95% CL upper limit on ggF A->ZH(tt) production for tanb=0.5</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20ggF,%20tanbeta=1">95% CL upper limit on ggF A->ZH(tt) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20ggF,%20tanbeta=5">95% CL upper limit on ggF A->ZH(tt) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20bbA,%20tanbeta=1">95% CL upper limit on bbA A->ZH(tt) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20bbA,%20tanbeta=5">95% CL upper limit on bbA A->ZH(tt) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20bbA,%20tanbeta=10">95% CL upper limit on bbA A->ZH(tt) production for tanb=10</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20ggA,%20tanbeta=0.5">95% CL upper limit on ggF A->ZH(bb) production for tanb=0.5</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20ggA,%20tanbeta=1">95% CL upper limit on ggF A->ZH(bb) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20ggA,%20tanbeta=5">95% CL upper limit on ggF A->ZH(bb) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=1">95% CL upper limit on bbA A->ZH(bb) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=5">95% CL upper limit on bbA A->ZH(bb) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=10">95% CL upper limit on bbA A->ZH(bb) production for tanb=10</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=20">95% CL upper limit on bbA A->ZH(bb) production for tanb=20</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=m(tt),L3hi_Zin,ggF-production">m(tt) distribution in the L3hi_Zin region of the lltt channel</a> <li><a href="?table=m(bb),2tag,0L,ggF-production">m(bb) distribution in the 2 b-tag 0L region of the vvbb channel</a> <li><a href="?table=m(bb),3ptag,0L,bbA-production">m(bb) distribution in the 3p b-tag 0L region of the vvbb channel</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin450,bbA-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=450 GeV hypothesis with the bbA signal shown</a> <li><a href="?table=m(tt),L3hi_Zin,bbA-production">m(tt) distribution in the L3hi_Zin region of the lltt channel with the bbA signal shown</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin350,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=350 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin400,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=400 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin450,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=450 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin500,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=500 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin550,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=550 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin600,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=600 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin700,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=700 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin800,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=800 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin130,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=130 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin150,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=150 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin200,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=200 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin250,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=250 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin300,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=300 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin350,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=350 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin400,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=400 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin450,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=450 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin500,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=500 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin600,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=600 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin700,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=700 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin800,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=800 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin130,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=130 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin150,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=150 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin200,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=200 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin250,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=250 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin300,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=300 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin350,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=350 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin400,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=400 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin450,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=450 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin500,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=500 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin600,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=600 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin700,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=700 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin800,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=800 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,2L">Fit discriminant mT(VH) in the 2L region of the vvbb channel</a> <li><a href="?table=mTVH,2tag,em">Fit discriminant mT(VH) in the em region of the vvbb channel</a> <li><a href="?table=mTVH,3ptag,2L">Fit discriminant mT(VH) in the 2L region of the vvbb channel</a> <li><a href="?table=mTVH,3ptag,em">Fit discriminant mT(VH) in the em region of the vvbb channel</a> <li><a href="?table=lep3pt,L3hi_Zin">pT(lepton,3) distribution in the L3hi_Zin region of the lltt channel</a> <li><a href="?table=etaHrestVH,L3hi_Zin">eta(H,VH rest frame) distribution in the signal region of the lltt channel</a> <li><a href="?table=ETmiss,2tag,0L">ETmiss distribution in the 2 b-tag signal region of the vvbb channel</a> <li><a href="?table=mtopnear,2tag,0L">m(top,near) distribution in the 2 b-tag signal region of the vvbb channel</a> <li><a href="?table=ETmiss,3ptag,0L">ETmiss distribution in the 3p b-tag signal region of the vvbb channel</a> <li><a href="?table=mtopnear,3ptag,0L">m(top,near) distribution in the 3p b-tag signal region of the vvbb channel</a> </ul> <b>Observed local significance:</b> <ul> <li><a href="?table=Local%20significance,%20lltt,%20ggF%20production">ggF A->ZH->lltt signals</a> <li><a href="?table=Local%20significance,%20lltt,%20bbA%20production">bbA A->ZH->lltt signals</a> <li><a href="?table=Local%20significance,%20vvbb,%20ggF%20production">ggF A->ZH->vvbb signals</a> <li><a href="?table=Local%20significance,%20vvbb,%20bbA%20production">bbA A->ZH->vvbb signals</a> </ul> <b>Acceptance and efficiency:</b> <ul> <li><a href="?table=Acceptance*efficiency,%20lltt,%20ggF%20production">ggF A->ZH->lltt signals</a> <li><a href="?table=Acceptance*efficiency,%20lltt,%20bbA%20production">bbA A->ZH->lltt signals</a> <li><a href="?table=Acceptance*efficiency,%20vvbb,%20ggF%20production">ggF A->ZH->vvbb signals</a> <li><a href="?table=Acceptance*efficiency,%20vvbb,%20bbA%20production">bbA A->ZH->vvbb signals</a> </ul>
The distribution of the fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=450 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 2 b-tag signal region of the vvbb channel for the mH=300 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 3+ b-tag signal region of the vvbb channel for the mH=300 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The m(tt) distribution in the Lhi3_Zin region of the lltt channel. <br><br><a href="?table=overview">return to overview</a>
The m(bb) distribution in the 2 b-tag 0L region of the vvbb channel. <br><br><a href="?table=overview">return to overview</a>
The m(bb) distribution in the 3+ b-tag 0L region of the vvbb channel. <br><br><a href="?table=overview">return to overview</a>
Expected and observed upper limits at 95% CL on sigma(gg->A)*B(A->ZH)*B(H->tt) in the (mA,mH) plane. The limits are shown for tanbeta=1. The tanbeta value is relevant only for the choice of the A boson width. <br><a href="?table=overview">return to overview</a>
Expected and observed upper limits at 95% CL on sigma(bbA)*B(A->ZH)*B(H->tt)$ in the (mA,mH) plane. The limits are shown for tanbeta=10. The tanbeta value is relevant only for the choice of the A boson width. <br><br><a href="?table=overview">return to overview</a>
Expected and observed upper limits at 95% CL on sigma(gg->A)*B(A->ZH)*B(H->bb) in the (mA,mH) plane. The limits are shown for tanbeta=1. The tanbeta value is relevant only for the choice of the A boson width. <br><br><a href="?table=overview">return to overview</a>
Expected and observed upper limits at 95% CL on sigma(bbA)*B(A->ZH)*B(H->bb) in the (mA,mH) plane. The limits are shown for tanbeta=10. The tanbeta value is relevant only for the choice of the A boson width. <br><br><a href="?table=overview">return to overview</a>
Expected and observed upper limits at 95% CL on sigma(gg->A)*B(A->ZH)*B(H->tt) in he (mA,mH) plane. The limits are shown for tanbeta=0.5. The tanbeta value is relevant only for the choice of the A boson width. <br><a href="?table=overview">return to overview</a>
Expected and observed upper limits at 95% CL on sigma(gg->A)*B(A->ZH)*B(H->tt) in the (mA,mH) plane. The limits are shown for tanbeta=5. The tanbeta value is relevant only for the choice of the A boson width. <br><a href="?table=overview">return to overview</a>
Expected and observed upper limits at 95% CL on sigma(bbA)*B(A->ZH)*B(H->tt) in the (mA,mH) plane. The limits are shown for tanbeta=1. The tanbeta value is relevant only for the choice of the A boson width. <br><br><a href="?table=overview">return to overview</a>
Expected and observed upper limits at 95% CL on sigma(bbA)*B(A->ZH)*B(H->tt)$ in the (mA,mH) plane. The limits are shown for tanbeta=5. The tanbeta value is relevant only for the choice of the A boson width. <br><br><a href="?table=overview">return to overview</a>
Expected and observed upper limits at 95% CL on sigma(gg->A)*B(A->ZH)*B(H->bb) in the (mA,mH) plane. The limits are shown for tanbeta=0.5. The tanbeta value is relevant only for the choice of the A boson width. <br><br><a href="?table=overview">return to overview</a>
Expected and observed upper limits at 95% CL on sigma(gg->A)*B(A->ZH)*B(H->bb) in the (mA,mH) plane. The limits are shown for tanbeta=5. The tanbeta value is relevant only for the choice of the A boson width. <br><br><a href="?table=overview">return to overview</a>
Expected and observed upper limits at 95% CL on sigma(bbA)*B(A->ZH)*B(H->bb) in the (mA,mH) plane. The limits are shown for tanbeta=1. The tanbeta value is relevant only for the choice of the A boson width. <br><br><a href="?table=overview">return to overview</a>
Expected and observed upper limits at 95% CL on sigma(bbA)*B(A->ZH)*B(H->bb) in the (mA,mH) plane. The limits are shown for tanbeta=5. The tanbeta value is relevant only for the choice of the A boson width. <br><br><a href="?table=overview">return to overview</a>
Expected and observed upper limits at 95% CL on sigma(bbA)*B(A->ZH)*B(H->bb) in the (mA,mH) plane. The limits are shown for tanbeta=20. The tanbeta value is relevant only for the choice of the A boson width. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=450 GeV hypothesis with the bbA signal shown for comparison. <br><br><a href="?table=overview">return to overview</a>
The m(tt) distribution in the L3hi_Zin region of the lltt channel for the mH=450 GeV hypothesis with the bbA signal shown for comparison. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=350 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=400 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=500 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=550 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=600 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=700 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=800 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 2 b-tag signal region of the vvbb channel for the mH=130 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 2 b-tag signal region of the vvbb channel for the mH=150 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 2 b-tag signal region of the vvbb channel for the mH=200 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 2 b-tag signal region of the vvbb channel for the mH=250 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 2 b-tag signal region of the vvbb channel for the mH=350 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 2 b-tag signal region of the vvbb channel for the mH=400 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 2 b-tag signal region of the vvbb channel for the mH=450 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 2 b-tag signal region of the vvbb channel for the mH=500 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 2 b-tag signal region of the vvbb channel for the mH=600 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 2 b-tag signal region of the vvbb channel for the mH=700 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 2 b-tag signal region of the vvbb channel for the mH=800 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH i+ the 3p b-tag signal region of the vvbb channel for the mH=130 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 3+ b-tag signal region of the vvbb channel for the mH=150 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 3+ b-tag signal region of the vvbb channel for the mH=200 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 3+ b-tag signal region of the vvbb channel for the mH=250 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 3+ b-tag signal region of the vvbb channel for the mH=350 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 3+ b-tag signal region of the vvbb channel for the mH=400 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 3+ b-tag signal region of the vvbb channel for the mH=450 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 3+ b-tag signal region of the vvbb channel for the mH=500 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 3+ b-tag signal region of the vvbb channel for the mH=600 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 3+ b-tag signal region of the vvbb channel for the mH=700 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 3+ b-tag signal region of the vvbb channel for the mH=800 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 2 b-tag 2L region of the vvbb channel. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 2 b-tag em region of the vvbb channel. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 3+ b-tag 2L region of the vvbb channel. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 3+ b-tag em region of the vvbb channel. <br><br><a href="?table=overview">return to overview</a>
Local significance for lltt ggF signals for tanbeta=1. <br><br><a href="?table=overview">return to overview</a>
Local significance for lltt bbA signals for tanbeta=20. <br><br><a href="?table=overview">return to overview</a>
Local significance for vvbb ggF signals for tanbeta=1. <br><br><a href="?table=overview">return to overview</a>
Local significance for vvbb bbA signals for tanbeta=20. <br><br><a href="?table=overview">return to overview</a>
Signal acceptance times efficiency for lltt ggF signals. <br><br><a href="?table=overview">return to overview</a>
Signal acceptance times efficiency for lltt bbA signals. <br><br><a href="?table=overview">return to overview</a>
Signal acceptance times efficiency for vvbb ggF signals. <br><br><a href="?table=overview">return to overview</a>
Signal acceptance times efficiency for vvbb bbA signals. <br><br><a href="?table=overview">return to overview</a>
The pT distribution of the third lepton in the L3hi_Zin region of the lltt channel. <br><br><a href="?table=overview">return to overview</a>
The eta distribution of the H boson candidate in the rest frame of the A boson candidate in the L3hi_Zin region of the lltt channel. <br><br><a href="?table=overview">return to overview</a>
The ETmiss distribution in the 2 b-tag 0L region of the vvbb channel. <br><br><a href="?table=overview">return to overview</a>
The m_top_near distribution in the 2 b-tag 0L region of the vvbb channel. <br><br><a href="?table=overview">return to overview</a>
The ETmiss distribution in the 3+ b-tag 0L region of the vvbb channel. <br><br><a href="?table=overview">return to overview</a>
The m_top_near distribution in the 3+ b-tag 0L region of the vvbb channel. <br><br><a href="?table=overview">return to overview</a>
Additional spin-0 particles appear in many extensions of the standard model. We search for long-lived spin-0 particles $S$ in $B$-meson decays mediated by a $b\to s$ quark transition in $e^+e^-$ collisions at the $\Upsilon(4S)$ resonance at the Belle II experiment. Based on a sample corresponding to an integrated luminosity of $189 \mathrm{\,fb}^{-1}$, we observe no evidence for signal. We set model-independent upper limits on the product of branching fractions $\mathrm{Br}(B^0\to K^*(892)^0(\to K^+\pi^-)S)\times \mathrm{Br}(S\to x^+x^-)$ and $\mathrm{Br}(B^+\to K^+S)\times \mathrm{Br}(S\to x^+x^-)$, where $x^+x^-$ indicates $e^+e^-, \mu^+\mu^-, \pi^+\pi^-$, or $K^+K^-$, as functions of $S$ mass and lifetime at the level of $10^{-7}$.
Expected and observed candidates for $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) as a function of the reduced mediator candidate mass.
Expected and observed candidates for $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) as a function of the reduced mediator candidate mass.
Expected and observed candidates for $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) as a function of the reduced mediator candidate mass.
Expected and observed candidates for $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) as a function of the reduced mediator candidate mass.
Expected and observed candidates for $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) as a function of the reduced mediator candidate mass.
Expected and observed candidates for $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) as a function of the reduced mediator candidate mass.
Expected and observed candidates for $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) as a function of the reduced mediator candidate mass.
Expected and observed candidates for $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) as a function of the reduced mediator candidate mass.
Exclusion regions in the plane of the sine of the mixing angle $\theta$ and scalar mass $m_S$
Exclusion regions in the plane of the coupling $g_Y = 2v/fa$ with the vacuum expectation value $v$ and the ALP mass $m_a$
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.001cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.003cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.005cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.007cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.01cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.025cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.05cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.1cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.25cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.5cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$1.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$2.5cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$5.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$10.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$25.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$50.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$100.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$200.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$400.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.001cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.003cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.005cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.007cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.01cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.025cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.05cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.1cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.25cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.5cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$1.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$2.5cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$5.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$10.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$25.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$50.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$100.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$200.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$400.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.001cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.003cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.005cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.007cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.01cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.025cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.05cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.1cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.25cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.5cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$1.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$2.5cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$5.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$10.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$25.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$50.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$100.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$200.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$400.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.001cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.003cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.005cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.007cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.01cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.025cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.05cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.1cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.25cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.5cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$1.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$2.5cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$5.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$10.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$25.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$50.0cm
Expected and observed limits on $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$100.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.001cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.003cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.005cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.007cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.01cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.025cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.05cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.1cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.25cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$0.5cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$1.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$2.5cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$5.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$10.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$25.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$50.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$100.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$200.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) for a lifetime of $c\tau=$400.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.001cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.003cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.005cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.007cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.01cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.025cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.05cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.1cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.25cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$0.5cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$1.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$2.5cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$5.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$10.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$25.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$50.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$100.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$200.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) for a lifetime of $c\tau=$400.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.001cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.003cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.005cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.007cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.01cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.025cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.05cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.1cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.25cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$0.5cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$1.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$2.5cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$5.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$10.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$25.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$50.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$100.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$200.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) for a lifetime of $c\tau=$400.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.001cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.003cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.005cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.007cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.01cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.025cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.05cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.1cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.25cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$0.5cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$1.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$2.5cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$5.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$10.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$25.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$50.0cm
Expected and observed limits on $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$) for a lifetime of $c\tau=$100.0cm
Efficiencies for $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$)
Efficiencies for $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$)
Efficiencies for $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$)
Efficiencies for $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to K^+K^-$)
Efficiencies for $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to e^+e^-$)
Efficiencies for $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$)
Efficiencies for $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$)
Efficiencies for $\mathcal{B}($$B^0\to K^{*0}(\to K^+\pi^-)S$$) \times$ $\mathcal{B}($$S\to K^+K^-$)
A search for physics beyond the Standard Model inducing periodic signals in the dielectron and diphoton invariant mass spectra is presented using 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data collected by the ATLAS experiment at the LHC. Novel search techniques based on continuous wavelet transforms are used to infer the frequency of periodic signals from the invariant mass spectra and neural network classifiers are used to enhance the sensitivity to periodic resonances. In the absence of a signal, exclusion limits are placed at the 95% confidence level in the two-dimensional parameter space of the clockwork gravity model. Model-independent searches for deviations from the background-only hypothesis are also performed.
The observed exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.
The median expected exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.
The expected plus one standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.
The expected minus one standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.
The expected plus two standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.
The expected minus two standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.
The observed exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $\gamma\gamma$ channel for the case with mass thresholds.
The median expected exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $\gamma\gamma$ channel for the case with mass thresholds.
The expected plus one standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $\gamma\gamma$ channel for the case with mass thresholds.
The expected minus one standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $\gamma\gamma$ channel for the case with mass thresholds.
The expected plus two standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $\gamma\gamma$ channel for the case with mass thresholds.
The expected minus two standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $\gamma\gamma$ channel for the case with mass thresholds.
The observed exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case without mass thresholds.
The median expected exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case without mass thresholds.
The expected plus one standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case without mass thresholds.
The expected minus one standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case without mass thresholds.
The expected plus two standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case without mass thresholds.
The expected minus two standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case without mass thresholds.
The observed exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $\gamma\gamma$ channel for the case without mass thresholds.
The median expected exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $\gamma\gamma$ channel for the case without mass thresholds.
The expected plus one standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $\gamma\gamma$ channel for the case without mass thresholds.
The expected minus one standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $\gamma\gamma$ channel for the case without mass thresholds.
The expected plus two standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $\gamma\gamma$ channel for the case without mass thresholds.
The expected minus two standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $\gamma\gamma$ channel for the case without mass thresholds.
This paper reports a search for Higgs boson pair ($hh$) production in association with a vector boson ($W$ or $Z$) using 139 $fb^{-1}$ of proton-proton collision data at $\sqrt{s}=$ 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed in final states in which the vector boson decays leptonically ($W\to\ell\nu, Z\to\ell\ell,\nu\nu$ with $\ell=e, \mu$) and the Higgs bosons each decay into a pair of $b$-quarks. It targets $Vhh$ signals from both non-resonant $hh$ production, present in the Standard Model (SM), and resonant $hh$ production, as predicted in some SM extensions. A 95% confidence-level upper limit of 183 (87) times the SM cross-section is observed (expected) for non-resonant $Vhh$ production when assuming the kinematics are as expected in the SM. Constraints are also placed on Higgs boson coupling modifiers. For the resonant search, upper limits on the production cross-sections are derived for two specific models: one is the production of a vector boson along with a neutral heavy scalar resonance $H$, in the mass range 260-1000 GeV, that decays into $hh$, and the other is the production of a heavier neutral pseudoscalar resonance $A$ that decays into a $Z$ boson and $H$ boson, where the $A$ boson mass is 360-800 GeV and the $H$ boson mass is 260-400 GeV. Constraints are also derived in the parameter space of two-Higgs-doublet models.
Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a Z boson decaying to neutrinos.
Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a W boson decaying to a charged lepton and a neutrino.
Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a Z boson decaying to charged leptons.
Acceptance times efficiency as a function of pseudoscalar resonant mass for each event selection step in the search for a neutral heavy narrow-width pseudoscalar resonance that decays to a 260 GeV scalar resonance and a Z boson, which decays to neutrinos.
Acceptance times efficiency as a function of pseudoscalar resonant mass for each event selection step in the search for a neutral heavy narrow-width pseudoscalar resonance that decays to a 300 GeV scalar resonance and a Z boson, which decays to neutrinos.
Acceptance times efficiency as a function of pseudoscalar resonant mass for each event selection step in the search for a neutral heavy narrow-width pseudoscalar resonance that decays to a 400 GeV scalar resonance and a Z boson, which decays to neutrinos.
Acceptance times efficiency as a function of pseudoscalar resonant mass for each event selection step in the search for a neutral heavy large-width pseudoscalar resonance that decays to a 260 GeV scalar resonance and a Z boson, which decays to neutrinos.
Acceptance times efficiency as a function of pseudoscalar resonant mass for each event selection step in the search for a neutral heavy large-width pseudoscalar resonance that decays to a 300 GeV scalar resonance and a Z boson, which decays to neutrinos.
Acceptance times efficiency as a function of pseudoscalar resonant mass for each event selection step in the search for a neutral heavy large-width pseudoscalar resonance that decays to a 400 GeV scalar resonance and a Z boson, which decays to neutrinos.
Acceptance times efficiency as a function of pseudoscalar resonant mass for each event selection step in the search for a neutral heavy narrow-width pseudoscalar resonance that decays to a 260 GeV scalar resonance and a Z boson, which decays to charged leptons.
Acceptance times efficiency as a function of pseudoscalar resonant mass for each event selection step in the search for a neutral heavy narrow-width pseudoscalar resonance that decays to a 300 GeV scalar resonance and a Z boson, which decays to charged leptons.
Acceptance times efficiency as a function of pseudoscalar resonant mass for each event selection step in the search for a neutral heavy narrow-width pseudoscalar resonance that decays to a 400 GeV scalar resonance and a Z boson, which decays to charged leptons.
Acceptance times efficiency as a function of pseudoscalar resonant mass for each event selection step in the search for a neutral heavy large-width pseudoscalar resonance that decays to a 260 GeV scalar resonance and a Z boson, which decays to charged leptons.
Acceptance times efficiency as a function of pseudoscalar resonant mass for each event selection step in the search for a neutral heavy large-width pseudoscalar resonance that decays to a 300 GeV scalar resonance and a Z boson, which decays to charged leptons.
Acceptance times efficiency as a function of pseudoscalar resonant mass for each event selection step in the search for a neutral heavy large-width pseudoscalar resonance that decays to a 400 GeV scalar resonance and a Z boson, which decays to charged leptons.
Expected and observed 95% CL upper limits on the cross-section of resonant $H\to 4b$ production in association with a W boson. The $\pm 1 \sigma$ and $\pm 2 \sigma$ uncertainty ranges for the expected limits are shown.
Expected and observed 95% CL upper limits on the cross-section of resonant $H\to 4b$ production in association with a Z boson. The $\pm 1 \sigma$ and $\pm 2 \sigma$ uncertainty ranges for the expected limits are shown.
Expected 95% CL upper limits on the cross-section of a heavy narrow-width pseudoscalar resonance decaying to a Z boson and a heavy scalar resonance decaying to $H\to 4b$. The $\pm 1 \sigma$ and $\pm 2 \sigma$ uncertainty ranges for the expected limits are shown.
Observed 95% CL upper limits on the cross-section of a heavy narrow-width pseudoscalar resonance decaying to a Z boson and a heavy scalar resonance decaying to $H\to 4b$. The $\pm 1 \sigma$ and $\pm 2 \sigma$ uncertainty ranges for the expected limits are shown.
Expected 95% CL upper limits on the cross-section of a heavy large-width pseudoscalar resonance decaying to a Z boson and a heavy scalar resonance decaying to $H\to 4b$. The $\pm 1 \sigma$ and $\pm 2 \sigma$ uncertainty ranges for the expected limits are shown.
Observed 95% CL upper limits on the cross-section of a heavy large-width pseudoscalar resonance decaying to a Z boson and a heavy scalar resonance decaying to $H\to 4b$. The $\pm 1 \sigma$ and $\pm 2 \sigma$ uncertainty ranges for the expected limits are shown.
Data and post-fit signal and background from S+B fit for 315 GeV resonant $H\to 4b$ production in association with a W boson.
Data and post-fit signal and background from S+B fit for 400 GeV resonant $H\to 4b$ production in association with a W boson.
Data and post-fit signal and background from S+B fit for 550 GeV resonant $H\to 4b$ production in association with a Z boson.
Data and post-fit signal and background from S+B fit for 400 GeV resonant $H\to 4b$ production in association with a Z boson.
Data and post-fit signal and background from S+B fit for a 790 GeV narrow-width pseudoscalar resonance decaying to a Z boson and a 300 GeV scalar resonance decaying to $H\to 4b$.
Data and post-fit signal and background from S+B fit for a 420 GeV large-width pseudoscalar resonance decaying to a Z boson and a 320 GeV scalar resonance decaying to $H\to 4b$.
Data and post-fit signal and background from S+B fit for a 700 GeV large-width pseudoscalar resonance decaying to a Z boson and a 380 GeV scalar resonance decaying to $H\to 4b$.
Data and post-fit signal and background from S+B fit for SM VHH production, with each Higgs boson decaying to $2b$.
A search is presented for pairs of light pseudoscalar bosons, in the mass range from 4 to 15 GeV, produced from decays of the 125 GeV Higgs boson. The decay modes considered are final states that arise when one of the pseudoscalars decays to a pair of tau leptons, and the other one either into a pair of tau leptons or muons. The search is based on proton-proton collisions collected by the CMS experiment in 2016 at a center-of-mass energy of 13 TeV that correspond to an integrated luminosity of 35.9 fb${-1}$. The 2$\mu$2$\tau$ and 4$\tau$ channels are used in combination to constrain the product of the Higgs boson production cross section and the branching fraction into 4$\tau$ final state, $\sigma\mathcal{B}$, exploiting the linear dependence of the fermionic coupling strength of pseudoscalar bosons on the fermion mass. No significant excess is observed beyond the expectation from the standard model. The observed and expected upper limits at 95% confidence level on $\sigma\mathcal{B}$, relative to the standard model Higgs boson production cross section, are set respectively between 0.022 and 0.23 and between 0.027 and 0.19 in the mass range probed by the analysis.
Expected and observed 95% CL upper limits on (sigma(pp->h)/sigma(pp->hSM)) * B(h -> aa -> tautautautau) as a function of m(a) obtained from the 13 TeV data, where h(SM) is the Higgs boson of the standard model, h is the observed particle with mass of 125 GeV, and (a) denotes a light Higgs-like state.
A search for exotic decays of the Higgs boson to a pair of light pseudoscalar particles a$_1$ is performed under the hypothesis that one of the pseudoscalars decays to a pair of opposite sign muons and the other decays to b$\overline{\mathrm{b}}$. Such signatures are predicted in a number of extensions of the standard model (SM), including next-to-minimal supersymmetry and two-Higgs-doublet models with an additional scalar singlet. The results are based on a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb$^{-1}$, accumulated with the CMS experiment at the CERN LHC in 2016 at a centre-of-mass energy of 13 TeV. No statistically significant excess is observed with respect to the SM backgrounds in the search region for pseudoscalar masses from 20 GeV to half of the Higgs boson mass. Upper limits at 95% confidence level are set on the product of the production cross section and branching fraction, $\sigma_{\mathrm{h}}\mathcal{B}$(h $\to$ a$_1$ a$_1$ $\to$ $\mu^+\mu^-\mathrm{b}\bar{\mathrm{b}}$), ranging from 5 to 33 fb, depending on the pseudoscalar mass. Corresponding limits on the branching fraction, assuming the SM prediction for $\sigma_{\mathrm{h}}$, are (1$-$7)$\times$ 10$^{-4}$.
Observed and expected upper limits at 95% CL on the product of the Higgs boson production cross section and B(h->aa->mumubb)
Observed and expected upper limits at 95% CL on the branching fraction of (h->aa->mumubb)
A search for the pair production of heavy fermionic partners of the top quark with charge 5/3 (X$_{5/3}$) is performed in proton-proton collisions at a center-of-mass energy of 13 TeV with the CMS detector at the CERN LHC. The data sample analyzed corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The X$_{5/3}$ quark is assumed always to decay into a top quark and a W boson. Both the right-handed and left-handed X$_{5/3}$ couplings to the W boson are considered. Final states with either a pair of same-sign leptons or a single lepton are studied. No significant excess of events is observed above the expected standard model background. Lower limits at 95% confidence level on the X$_{5/3}$ quark mass are set at 1.33 and 1.30 TeV respectively for the case of right-handed and left-handed couplings to W bosons in a combination of the same-sign dilepton and single-lepton final states.
Summary of yields from simulated prompt same-sign dilepton (SSP MC), same-sign nonprompt (Nonprompt), and opposite-sign prompt (ChargeMisID) backgrounds after the full analysis selection. Also shown are the number of expected events for an RH $X_{5/3}$ particle with a mass of 1 TeV. The uncertainties include both statistical and all systematic components (as described in Section 8). The number of events and uncertainties correspond to the background- only fit to data for the background, while for the signal they are based on the yields before the fit to data.
Distributions of $\min[M(\ell,\mathrm{b})]$ in the $\mathrm{t\overline{t}}$ control region, for 1 b-tagged jet category. Example signal distributions are also shown. The background distributions correspond to background-only fit to data while signal distributions are before the fit to data. Electron and muon event samples are combined. The last bin includes overflow events and its content is divided by the bin width. The distributions in each category have variable-size bins, chosen so that the statistical uncertainty in the total background in each bin is less than 30%. The lower panel in each plot shows the difference between the observed and the predicted numbers of events in that bin divided by the total uncertainty. The total uncertainty is calculated as the sum in quadrature of the statistical uncertainty in the observed measurement and the statistical and systematic uncertainties in the background-only fit to data.
Distributions of $\min[M(\ell,\mathrm{b})]$ in the $\mathrm{t\overline{t}}$ control region, for 2 or more b-tagged jet category. Example signal distributions are also shown. The background distributions correspond to background-only fit to data while signal distributions are before the fit to data. Electron and muon event samples are combined. The last bin includes overflow events and its content is divided by the bin width. The distributions in each category have variable-size bins, chosen so that the statistical uncertainty in the total background in each bin is less than 30%. The lower panel in each plot shows the difference between the observed and the predicted numbers of events in that bin divided by the total uncertainty. The total uncertainty is calculated as the sum in quadrature of the statistical uncertainty in the observed measurement and the statistical and systematic uncertainties in the background-only fit to data.
Distributions of $\min[M(\ell,\mathrm{j})]$ in the W+jets control region, for 0 W-tagged jet category. Example signal distributions are also shown. The background distributions correspond to background-only fit to data while signal distributions are before the fit to data. Electron and muon event samples are combined. The last bin includes overflow events and its content is divided by the bin width. The distributions in each category have variable-size bins, chosen so that the statistical uncertainty in the total background in each bin is less than 30%. The lower panel in each plot shows the difference between the observed and the predicted numbers of events in that bin divided by the total uncertainty. The total uncertainty is calculated as the sum in quadrature of the statistical uncertainty in the observed measurement and the statistical and systematic uncertainties in the background-only fit to data.
Distributions of $\min[M(\ell,\mathrm{j})]$ in the W+jets control region, for 1 or more W-tagged jet category. Example signal distributions are also shown. The background distributions correspond to background-only fit to data while signal distributions are before the fit to data. Electron and muon event samples are combined. The last bin includes overflow events and its content is divided by the bin width. The distributions in each category have variable-size bins, chosen so that the statistical uncertainty in the total background in each bin is less than 30%. The lower panel in each plot shows the difference between the observed and the predicted numbers of events in that bin divided by the total uncertainty. The total uncertainty is calculated as the sum in quadrature of the statistical uncertainty in the observed measurement and the statistical and systematic uncertainties in the background-only fit to data.
Distributions of $\min[M(\ell,\mathrm{b})]$ in events with 0 t-tagged jets, 0 W-tagged jets, and 1 b-tagged jets for the combined electron and muon samples in the signal region. Example signal distributions are also shown. The background distributions correspond to the background-only fit to data, while signal distributions are before the fit to data. The last bin includes overflow events and its content is divided by the bin width. The distributions in each category have variable-size bins, chosen so that the statistical uncertainty in the total background in each bin is less than 30%. The lower panel in each plot shows the difference between the observed and the predicted numbers of events in that bin divided by the total uncertainty. The total uncertainty is calculated as the sum in quadrature of the statistical uncertainty in the observed measurement and the statistical and systematic uncertainties in the background-only fit to data.
Distributions of $\min[M(\ell,\mathrm{b})]$ in events with 0 t-tagged jets, 0 W-tagged jets, and 2 or more b-tagged jets for the combined electron and muon samples in the signal region. Example signal distributions are also shown. The background distributions correspond to the background-only fit to data, while signal distributions are before the fit to data. The last bin includes overflow events and its content is divided by the bin width. The distributions in each category have variable-size bins, chosen so that the statistical uncertainty in the total background in each bin is less than 30%. The lower panel in each plot shows the difference between the observed and the predicted numbers of events in that bin divided by the total uncertainty. The total uncertainty is calculated as the sum in quadrature of the statistical uncertainty in the observed measurement and the statistical and systematic uncertainties in the background-only fit to data.
Distributions of $\min[M(\ell,\mathrm{b})]$ in events with 0 t-tagged jets, 1 or more W-tagged jets, and 1 b-tagged jets for the combined electron and muon samples in the signal region. Example signal distributions are also shown. The background distributions correspond to the background-only fit to data, while signal distributions are before the fit to data. The last bin includes overflow events and its content is divided by the bin width. The distributions in each category have variable-size bins, chosen so that the statistical uncertainty in the total background in each bin is less than 30%. The lower panel in each plot shows the difference between the observed and the predicted numbers of events in that bin divided by the total uncertainty. The total uncertainty is calculated as the sum in quadrature of the statistical uncertainty in the observed measurement and the statistical and systematic uncertainties in the background-only fit to data.
Distributions of $\min[M(\ell,\mathrm{b})]$ in events with 0 t-tagged jets, 1 or more W-tagged jets, and 2 or more b-tagged jets for the combined electron and muon samples in the signal region. Example signal distributions are also shown. The background distributions correspond to the background-only fit to data, while signal distributions are before the fit to data. The last bin includes overflow events and its content is divided by the bin width. The distributions in each category have variable-size bins, chosen so that the statistical uncertainty in the total background in each bin is less than 30%. The lower panel in each plot shows the difference between the observed and the predicted numbers of events in that bin divided by the total uncertainty. The total uncertainty is calculated as the sum in quadrature of the statistical uncertainty in the observed measurement and the statistical and systematic uncertainties in the background-only fit to data.
Distributions of $\min[M(\ell,\mathrm{b})]$ in events with 1 or more t-tagged jets, 0 W-tagged jets, and 1 b-tagged jets for the combined electron and muon samples in the signal region. Example signal distributions are also shown. The background distributions correspond to the background-only fit to data, while signal distributions are before the fit to data. The last bin includes overflow events and its content is divided by the bin width. The distributions in each category have variable-size bins, chosen so that the statistical uncertainty in the total background in each bin is less than 30%. The lower panel in each plot shows the difference between the observed and the predicted numbers of events in that bin divided by the total uncertainty. The total uncertainty is calculated as the sum in quadrature of the statistical uncertainty in the observed measurement and the statistical and systematic uncertainties in the background-only fit to data.
Distributions of $\min[M(\ell,\mathrm{b})]$ in events with 1 or more t-tagged jets, 0 W-tagged jets, and 2 or more b-tagged jets for the combined electron and muon samples in the signal region. Example signal distributions are also shown. The background distributions correspond to the background-only fit to data, while signal distributions are before the fit to data. The last bin includes overflow events and its content is divided by the bin width. The distributions in each category have variable-size bins, chosen so that the statistical uncertainty in the total background in each bin is less than 30%. The lower panel in each plot shows the difference between the observed and the predicted numbers of events in that bin divided by the total uncertainty. The total uncertainty is calculated as the sum in quadrature of the statistical uncertainty in the observed measurement and the statistical and systematic uncertainties in the background-only fit to data.
Distributions of $\min[M(\ell,\mathrm{b})]$ in events with 1 or more t-tagged jets, 1 or more W-tagged jets, and 1 b-tagged jets for the combined electron and muon samples in the signal region. Example signal distributions are also shown. The background distributions correspond to the background-only fit to data, while signal distributions are before the fit to data. The last bin includes overflow events and its content is divided by the bin width. The distributions in each category have variable-size bins, chosen so that the statistical uncertainty in the total background in each bin is less than 30%. The lower panel in each plot shows the difference between the observed and the predicted numbers of events in that bin divided by the total uncertainty. The total uncertainty is calculated as the sum in quadrature of the statistical uncertainty in the observed measurement and the statistical and systematic uncertainties in the background-only fit to data.
Distributions of $\min[M(\ell,\mathrm{b})]$ in events with 1 or more t-tagged jets, 1 or more W-tagged jets, and 2 or more b-tagged jets for the combined electron and muon samples in the signal region. Example signal distributions are also shown. The background distributions correspond to the background-only fit to data, while signal distributions are before the fit to data. The last bin includes overflow events and its content is divided by the bin width. The distributions in each category have variable-size bins, chosen so that the statistical uncertainty in the total background in each bin is less than 30%. The lower panel in each plot shows the difference between the observed and the predicted numbers of events in that bin divided by the total uncertainty. The total uncertainty is calculated as the sum in quadrature of the statistical uncertainty in the observed measurement and the statistical and systematic uncertainties in the background-only fit to data.
Expected and observed limits at 95% CL for an LH $X_{5/3}$ after combining all categories for the same-sign dilepton final state. The theoretical uncertainty in the signal cross section is shown as a narrow band around the theoretical prediction.
Expected and observed limits at 95% CL for an RH $X_{5/3}$ after combining all categories for the same-sign dilepton final state. The theoretical uncertainty in the signal cross section is shown as a narrow band around the theoretical prediction.
Expected and observed limits at 95% CL for an LH $X_{5/3}$ after combining all categories for the single-lepton final state. The theoretical uncertainty in the signal cross section is shown as a narrow band around the theoretical prediction.
Expected and observed limits at 95% CL for an RH $X_{5/3}$ after combining all categories for the single-lepton final state. The theoretical uncertainty in the signal cross section is shown as a narrow band around the theoretical prediction.
Expected and observed limits at 95% CL for an LH $X_{5/3}$ after combining the same-sign dilepton and single-lepton final states. The theoretical uncertainty in the signal cross section is shown as a narrow band around the theoretical prediction.
Expected and observed limits at 95% CL for an RH $X_{5/3}$ after combining the same-sign dilepton and single-lepton final states. The theoretical uncertainty in the signal cross section is shown as a narrow band around the theoretical prediction.
A search for Higgs bosons that decay into a bottom quark-antiquark pair and are accompanied by at least one additional bottom quark is performed with the CMS detector. The data analyzed were recorded in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} =$ 13 TeV at the LHC, corresponding to an integrated luminosity of 35.7 fb$^{-1}$. The final state considered in this analysis is particularly sensitive to signatures of a Higgs sector beyond the standard model, as predicted in the generic class of two Higgs doublet models (2HDMs). No signal above the standard model background expectation is observed. Stringent upper limits on the cross section times branching fraction are set for Higgs bosons with masses up to 1300 GeV. The results are interpreted within several MSSM and 2HDM scenarios.
Expected and observed 95% CL upper limits on sigma(pp->b+H(MSSM)+X) * B(H(MSSM) -> bb) in pb as a function of m(H(MSSM)), where H(MSSM) denotes a heavy Higgs-like state like the H and A bosons of MSSM and 2HDM, as obtained from the 13 TeV data.
Expected and observed 95% CL upper limits on tan(beta) as a function of m(A) in the mhmodp benchmark scenario for a higgsino mass parameter of mu=+200 GeV. Since theoretical predictions are not reliable for tan(beta)>60, entries for which tan(beta) would exceed this value are indicated by N/A.
Expected and observed 95% CL upper limits on tan(beta) as a function of m(A) in the hMSSM benchmark scenario. Since theoretical predictions are not reliable for tan(beta)>60, entries for which tan(beta) would exceed this value are indicated by N/A.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.