We have observed hadronic final states produced in the decays of Z bosons. In order to study the parton structure of these events, we compare the distributions in sphericity, thurst, aplanarity, and number of jets to the predictions of several QCD-based models and to data from lower energies. The data and models agree within the present statistical precision.
Corrected event shape distributions.
Corrected event shape distributions.
Corrected event shape distributions.
Using 123 multihadronic inclusive muon-production e+e− annihilation events at an average c.m. energy of 55.2 GeV, we extracted the forward-backward charge asymmetry of the e+e−→bb¯ process and the R ratio for bb¯ production. We used an analysis method in which the behavior of the c quark and lighter quarks is assumed, with only that of the b quark left indeterminate. The results, Ab=-0.72±0.28(stat)±0.13(syst) and Rb=0.57±0.16±0.10, are consistent with the standard model.
Asymmetry in BOTTOM quark production.
Ratio of BOTTOM quark production to total hadron cross section (R value).
Total and differential K0 corss sections are presented from e+e− collisions at s=29 GeV in the High Resolution Spectrometer detector. K0 and charged-particle distributions are compared in a study of the hadronization of quarks of known flavor. Ecents of the reaction e+e−→cc¯ are tagged by identifying D*'s while uu¯, dd¯, or ss¯ events are tagged through the identification of a charged particle with fractional momentum near 1. Parton-shower models with cluster and string fragmentation are compared with these data. Also, certain particle scaling tests are performed using the quark-flavor tags. In addition, K0 production in two- and three-jet events is compared to these models.
Corrected Cross Sections (Lund MC used to extrapolate).
R value for K0 production.
K0 differential cross section as function of the fractional energy.
Using the ARGUS detector at the DORIS II e + e - storage ring at DESY, we have observed a new charmed meson of mass (2469±4±6) MeV/ c 2 , decaying to D 0 π + . This state is a strong candidate for the charged isospin partner of the D ∗ (2459) 0 . The isospin mass splitting is measured to be (14±5±8) MeV / c 2 .
The cross section times branching ratio.
The general characteristics of inelastic proton-antiproton collisions at the CERN SPS Collider are studied with the UA1 detector using magnetic and calorimetric analysis. Results are presented on charged particle multiplicities and transverse and longitudinal momenta, and on total transverse energy distributions at centre of mass energies ranging from 0.2 to 0.9 TeV.
No description provided.
Invariant cross section of charged hadrons.
Inclusive cross section for single charged hadrons as a function of PT for the pseudorapdity region 0.8 to 4 for centre of mass energy 900 GeV.. Data read from plot.
The excitation function of the reaction p p→ Λ Λ in the threshold region has been measured at LEAR. Sixteen measurements of the total cross section, in the energy range between 0.85 MeV below threshold and 4.05 MeV above, are presented. The shapes of the measured differential cross sections indicate a remarkably strong p-wave contribution even down to the reaction threshold. We also report here the measurement of significant polarizations in the threshold region; these are compared with previous higher-energy data.
Data to be supplied by authors.
No description provided.
No description provided.
In order to improve existing I=0 phase shift solutions, the spin correlation parameter ANN and the analyzing powers A0N and AN0 have been measured in n-p elastic scattering over an angular range of 50°–150° (c.m.) at three neutron energies (220, 325, and 425 MeV) to an absolute accuracy of ±0.03. The data have a profound effect on various phase parameters, particularly the P11, D23, and ε1 phase parameters which in some cases change by almost a degree. With the exception of the highest energy, the data support the predictions of the latest version of the Bonn potential. Also, the analyzing power data (A0N and AN0) measured at 477 MeV in a different experiment over a limited angular range [60°–80° (c.m.)] are reported here.
The beam analysing power at incident kinetic energy 220 MeV. Additional systematic uncertainty of +- 0.015 and a scalar error of 3.5 PCT.
The beam analysing power at incident kinetic energy 325 MeV. Additional systematic uncertainty of +- 0.018 and a scalar error of 3.1 PCT.
The beam analysing power at incident kinetic energy 425 MeV. Additional systematic uncertainty of +- 0.022 and a scalar error of 3.3 PCT.
Multiplicities of neutrons and light charged particles associated with central collisions have been measured in the energy range 27–77 MeV/u for the systems 40 Ar+ 197 Au, 232 Th. The experiments demonstrate the occurrence of a saturation of the thermal energy deposited in the system around 650 MeV, corresponding to a constant internal temperature close to 5 MeV.
No description provided.
No description provided.
No description provided.
We report on a high statistics study of π0 and η production in continuum events and in direct decays of the Γ(1S) and Γ(2S) resonances. The measured production rates per event are\(\left\langle {n_{\pi ^0 } } \right\rangle\)=3.22 ± 0.07 ± 0.31 (3.97 ± 0.23 ± 0.38) and 〈nη〉=0.19 ± 0.04 ± 0.04 (0.40 ± 0.14 ± 0.09) for continuum events (direct Γ(1S) decays).
First data point in table is from the continuum at sqrt(s)=9.46 GeV.
First data point in table is from the continuum at sqrt(s)=9.46 GeV.
PI0 spectrum in the continuum.
The charmed quark charge asymmetry has been measured at the average centre of mass energy of 35 GeV with the JADE detector at thee+e− storage ring PETRA. Charmed quarks were identified byD*± tagging using the ΔM technique.D*± mesons were reconstructed through their decay intoD0 mesons resulting in (Kπ) π and (K π π π) π final states. The measured charge asymmetryA=−0.149±0.067 is in agreement with the expectation from the electroweak interference effect in quantum flavour dynamics (QFD).
CHARMED quark charge asymmetry.