Date

Study of Anti-deuteron Production in $e^+ e^-$ Annihilation at 10-{GeV} Center-of-mass Energy

The ARGUS collaboration Albrecht, H. ; Glaser, R. ; Harder, G. ; et al.
Phys.Lett.B 236 (1990) 102-108, 1990.
Inspire Record 283027 DOI 10.17182/hepdata.29735

We report a measurement of the production of antideuterons d in e + e − annihilation at centre-of-mass energies around 10 GeV using the ARGUS detector at the DORIS II storage ring. We observe an enhancement of d production in direct hadronic ϒ (1S) and ϒ (2S) resonance decays. From 21 events width a d candidate the inclusive cross section 1 σ dir had · d σ d p and the production rate of antideuterons are determined. A production rate of (6.0±2.0±0.6) × 10 -5 d per direct hadronic ϒ decay and a 90% CL upper limit of 1.7 × 10 −5 d per e + e − →q q continuum event are obtained. These results are related to antiproton production through a simple model.

1 data table

Acceptance corrected, background subtracted momentum spectrum observed in UPSI(1S) and UPSI(2S) resonance decays.


MULTI - HADRON EVENT PROPERTIES IN e+ e- ANNIHILATION AT s**(1/2) = 52-GeV to 57-GeV

The AMY collaboration Li, Y.K. ; Li, J. ; Cheng, C.P. ; et al.
Phys.Rev.D 41 (1990) 2675, 1990.
Inspire Record 283337 DOI 10.17182/hepdata.38416

We present the general properties of multihadron final states produced by e+e− annihilation at center-of-mass energies from 52 to 57 GeV in the AMY detector at the KEK collider TRISTAN. Global shape, inclusive charged-particle, and particle-flow distributions are presented. Our measurements are compared with QCD+fragmentation models that use either leading-logarithmic parton-shower evolution or QCD matrix elements at the parton level, and either string or cluster fragmentation for hadronization.

22 data tables

Rapidity distribution with respect to the Thrust axis.

Charged particle X distribution.

Charged particle PL distribution.

More…

Inclusive Strange Particle Production in $e^+ e^-$ Annihilation

The CELLO collaboration Behrend, H.J. ; Criegee, L. ; Field, J.H. ; et al.
Z.Phys.C 46 (1990) 397-404, 1990.
Inspire Record 283026 DOI 10.17182/hepdata.15225

We present an analysis of strange particle production frome+e− annihilation into multihadronic final states. The experiment was performed with the CELLO detector at the PETRA storage ring at DESY, the data was taken at a centre of mass energy of 35 GeV with an integrated luminosity of 86 pb−1. The particlesKS0,K*± and Λ have been identified by their characteristic decays, and differential cross sections for their production have been obtained. From a comparison ofKS0 andK*± rates the Lund vector meson suppression parameterV/(V+P)S has been determined.

6 data tables

Errors are statistical only.

Errors are statistical only.

Errors are statistical only.

More…

Determination of $\alpha^- s$ From a Differential Jet Multiplicity Distribution at {SLC} and {PEP}

Komamiya, Sachio ; Le Diberder, F. ; Abrams, G.S. ; et al.
Phys.Rev.Lett. 64 (1990) 987, 1990.
Inspire Record 283630 DOI 10.17182/hepdata.19937

We measured the differential jet-multiplicity distribution in e+e− annihilation with the Mark II detector. This distribution is compared with the second-order QCD prediction and αs is determined to be 0.123±0.009±0.005 at √s≊MZ (at the SLAC Linear Collider) and 0.149±0.002±0.007 at √s=29 GeV (at the SLAC storage ring PEP). The running of αs between these two center-of-mass energies is consistent with the QCD prediction.

2 data tables

DIFFERENTIAL JET MULTIPLICITIES.

DIFFERENTIAL JET MULTIPLICITIES.


MEASUREMENT OF THE RATIO sigma (W ---> e neutrino) / sigma (Z ---> e e) IN anti-p p COLLISIONS AT S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, Dante E. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 64 (1990) 152-156, 1990.
Inspire Record 285490 DOI 10.17182/hepdata.19969

An analysis of W- and Z-boson production using data from the Collider Detector at Fermilab at √s =1.8 TeV yields σ(W→ev)/σ(Z→ee)=10.2±0.8(stat)±0.4(syst). The width of the W boson, Γ(W), and a limit on the top-quark mass independent of decay mode are extracted from this measurement.

1 data table

No description provided.


The Two jet invariant mass distribution at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.D 41 (1990) 1722-1725, 1990.
Inspire Record 288745 DOI 10.17182/hepdata.23056

We present the dijet invariant-mass distribution in the region between 60 and 500 GeV, measured in 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. Jets are restricted to the pseudorapidity interval |η|<0.7. Data are compared with QCD calculations; axigluons are excluded with 95% confidence in the region 120<MA<210 GeV for axigluon width ΓA=NαsMA6, with N=5.

1 data table

Corrected mass distributions for jets restricted to the pseudorapidity region ABS(ETARAP) <0.7.


Measurement of the Mass and Lifetime of the Charmed Strange Baryon $\Xi(c$)+

The ACCMOR collaboration Barlag, S. ; Becker, H. ; Bohringer, T. ; et al.
Phys.Lett.B 233 (1989) 522-529, 1989.
Inspire Record 283345 DOI 10.17182/hepdata.49626

We have observed six unambiguous decays of the charmed strange baryon Ξ c + (or charge conjugate Ξ c − ) in the 230 GeV/c negative pions or kaons on a copper target at the CERN SPS using silicon microstrip detectors and charge-coupled devices for vertex reconstruction. Three of them have been reconstructed through the decay chain Ξ c + → Ξ − π + π + , Ξ − → Λ 0 π − , Λ 0 → pπ − and the other three through the decay chain Ξ c + → Σ + K − π + → pπ 0 . We present our measurements of the mass, lifetime and production cross-section of the Ξ c + , as well as of the branching ration for the two decay modes.

1 data table

The cross sections times branching ratio, linear A-dependence is assumed.


Neutrino Production of Opposite Sign Dimuons at Tevatron Energies

Foudas, C. ; Bachmann, K.T. ; Bernstein, R.H. ; et al.
Phys.Rev.Lett. 64 (1990) 1207, 1990.
Inspire Record 26417 DOI 10.17182/hepdata.20000

We have measured the strange-quark content of the nucleon, ηs=−0.08+0.012, and the Kobayashi-Maskawa matrix element ‖Vcd‖=0.220−0.018+0.015 using a sample of 1797 νμ- and ν¯μ-induced μ−μ+ events with Pμ≥9 GeV/c and 30≤Eν≤600 GeV. The data are consistent with the slow-rescaling hypothesis of charm production in ν-N scattering and within this formalism yield a value of the charm-quark mass parameter mc=1.31−0.48+0.64 GeV/c2. .AE

2 data tables

No description provided.

No description provided.


Properties of Hadronic Events in e$^{+} $e$^{-}$ Annihilation at $S^{(1/2)}=91$-{GeV}

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Lees, J.P. ; et al.
Phys.Lett.B 234 (1990) 209-218, 1990.
Inspire Record 283354 DOI 10.17182/hepdata.29739

We report on properties of hadronic events from e + e − annihilation observed by the ALEPH detector at the large Electron Positron Collider at CERN. The center-of-mass energy was s =91.0−91.3 GeV . Measured distributions of the global event-shape variables sphericity, aplanarity, thrust and minor value, and of the inclusive variables x p , p ⊥ in , p ⊥ out and y are presented. We measure a mean charged multiplicity in hadronic events of 〈 N ch 〉=21.3±0.1 (statistical)±0.6 (systematic). The data are in good agreement with QCD-based models which use the leading-logarithm approximation, and are less well described by a model using O( α s 2 ) QCD.

1 data table

NO RAD. CORR APPLIED.


A New Determination of the Electroweak Mixing Angle From $\nu_\mu$ Electron Scattering

The CHARM-II collaboration Geiregat, D. ; Vilain, P. ; Wilquet, G. ; et al.
Phys.Lett.B 232 (1989) 539, 1989.
Inspire Record 283348 DOI 10.17182/hepdata.29754

We are reporting on a new determination of sin 2 ϑ w from the ratio of v μ e to v e scattering cross sections. A new detector designed for this purpose was exposed tothe Wide Band Neutrino Beamof the 450 GeV (CERN SPS. An analysis of data taken in 1987 and 1988 is presented based on 762 v μ e and 1017 v e events. From the ratio of σ( v μ e ) to σ( v μ e ) we determined sin 2 ϑ w =0.233±0.012 ( stat ) ± 0.008 ( syst ) without radiative correction. With radiative correction for m t = m H =100 GeV we find sin 2 ϑ w =0.232±0.012( stat )±0.008( syst ).

2 data tables

Data without electroweak radiative corrections.

Data corrected for electroweak radiative effects with TOP and HIGGS masses 100 GeV.