We study the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-\gamma$, with a hard photon radiated from the initial state. About 60,000 fully reconstructed events have been selected from 89 $fb^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that these data can be compared with the corresponding direct $e^+e^-$ measurements. From the $4\pi$-mass spectrum, the cross section for the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-$ is measured for center-of-mass energies from 0.6 to 4.5 $GeV/c^2$. The uncertainty in the cross section measurement is typically 5%. We also measure the cross sections for the final states $K^+ K^- \pi^+\pi^-$ and $K^+ K^- K^+ K^-$. We observe the $J/\psi$ in all three final states and measure the corresponding branching fractions. We search for X(3872) in $J/\psi (\to\mu^+\mu^-) \pi^+\pi^-$ and obtain an upper limit on the product of the $e^+e^-$ width of the X(3872) and the branching fraction for $X(3872) \to J/\psi\pi^+\pi^-$.
Measured PI+ PI- PI+ PI- cross sections. The errors are statistical only.
Measured K+ K- PI+ PI- cross sections. The errors are statistical only.
Measured K+ K- K+ K- cross sections. The errors are statistical only.
The process e+e- --> pi+ pi- pi0 gamma has been studied at a center-of-mass energy near the Y(4S) resonance using a 89.3 fb-1 data sample collected with the BaBar detector at the PEP-II collider. From the measured 3pi mass spectrum we have obtained the products of branching fractions for the omega and phi mesons, B(omega --> e+e-)B(omega --> 3pi)=(6.70 +/- 0.06 +/- 0.27)10-5 and B(phi --> e+e-)B(phi --> 3pi)=(4.30 +/- 0.08 +/- 0.21)10-5, and evaluated the e+e- --> pi+ pi- pi0 cross section for the e+e- center-of-mass energy range 1.05 to 3.00 GeV. About 900 e+e- --> J/psi gamma --> pi+ pi- pi0 gamma events have been selected and the branching fraction B(J/psi --> pi+ pi- pi0)=(2.18 +/- 0.19)% has been measured.
The measured 3PI mass spectrum calculated for a 25 MeV bin size.
The production of $J/\psi$ mesons in continuum $e^+e^-$ annihilations has been studied with the BABAR detector at energies near the $\Upsilon(4S)$ resonance, approximately 10.6 GeV. The mesons are distinguished from $J/\psi$ production in B decays through their center-of-mass momentum and energy. We measure the cross section $e^+e^-\to J/\psi X$ to be $2.52\pm 0.21\pm 0.21$ pb: for momentum above 2 GeV/c, it is $1.87\pm 0.10\pm 0.15$ pb. We set a 90% confidence level upper limit on the branching fraction for direct $\Upsilon(4S)$\to J/\psi X$ decays at $4.7\times 10^{-4}$.
Cross section measurement.
We present measurements of time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurement uses a data sample of 23 million Upsilon(4S)-->B-anti-B decays collected by the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we find events where one neutral B meson is fully reconstructed in a CP eigenstate containing charmonium and the flavor of the other neutral B meson is determined from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay time distributions in such events. The result is sin2beta=0.34 +/- 0.20 (stat) +/- 0.05 (syst).
Standard Model predicts the time-dependent rate asymmetry as follows: A(t) = (B0(t)-BBAR0(t))/(B0(t)+BBAR0(t)) = SIN(2*BETA)*SIN(Delta(M)*t), where Delta(M) is the mass difference between the two B0 mass eigenstates. The total systematic error equals +0.50 -0.46.
The reaction $~{12}{\rm C}(\nu_\mu,\mu~-) {\rm X}$ has been measured near threshold using a $\pi ~+$ decay-in-flight $\nu_\mu$ beam from the Los Alamos Meson Physics Facility and a massive liquid scintillator neutrino detector (LSND). In the energy region $123.7 < {\rm E}_\nu < 280$ MeV, the measured spectral shape is consistent with that expected from the Fermi Gas Model. However, the measured flux--averaged inclusive cross section ($(8.3 \pm 0.7 {\rm stat.} \pm 1.6 {\rm syst.}) \times 10~{-40} {\rm cm}~2$) is more than a factor of 2 lower than that predicted by the Fermi Gas Model and by a recent random phase approximation calculation.
No description provided.
The inclusive production of neutral kaons is studied inK+p and π+p interactions at 250 GeV/c. Total and semi-inclusive cross sections and average kaon multiplicities are presented and compared with the data at lower energies. The longitudinal and transverse momentum distributions and their energy dependence are analyzed. The results are interpreted in the framework of recent parton models.
No description provided.
No description provided.
No description provided.
Differential cross sections for dp elastic scattering from 60° to 175° center of momentum (c.m.) were measured at 3.43, 4.50, 5.75, and 6.60 GeVc incident deuteron momentum. The measurements were made with a two-arm magnetic spectrometer, making use of multiwire proportional chamber detectors. The deuterons were accelerated at the Bevatron of the Lawrence Berkeley Laboratory. Data are compared with predictions of the baryon-pickup model and the one-pion-exchange model. The backward dip at 180° c.m. for 4.5 GeVc, predicted by Craigie and Wilkin using the one-pion-exchange model, is not observed, but reasonable fits to the momentum variation and angular distributions are found. When the data are plotted against the variable Δ of the baryon-pickup model, the s dependence is greatly reduced.
No description provided.
No description provided.
No description provided.
A measurement of the complete differential cross section for the reaction pp→dπ+ at 3.00, 3.20, 3.43, 3.65, 3.83, 4.00, 4.20, and 5.05 GeVc incident proton momentum has been made in an attempt to establish the role of the Δ (1950) in this region. The data show that the previously observed enhancement in the forward cross section between 3 and 4 GeVc due to this isobar is an effect which damps out quickly as the production angle departs from zero degrees, in contrast with the well-known enhancement at 1.35 GeVc, which is evident at all angles. In particular, the one-pion-exchange model is in poor agreement with the extended set of data. A detailed description is given of a novel proportional-wire-chamber system which facilitated the selection of this rather rare reaction from a very high competing background.
Axis error includes +- 6/6 contribution.
Axis error includes +- 6/6 contribution.
No description provided.