Showing 10 of 60 results
Measurements of the anisotropy parameter v_2 of identified hadrons (pions, kaons, and protons) as a function of centrality, transverse momentum p_T, and transverse kinetic energy KE_T at midrapidity (|\eta|<0.35) in Au+Au collisions at sqrt(s_NN) = 200 GeV are presented. Pions and protons are identified up to p_T = 6 GeV/c, and kaons up to p_T = 4 GeV/c, by combining information from time-of-flight and aerogel Cherenkov detectors in the PHENIX Experiment. The scaling of v_2 with the number of valence quarks (n_q) has been studied in different centrality bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observed quark-number scaling is observed at large values of KE_T/n_q in noncentral Au+Au collisions (20--60%), but this scaling remains valid in central collisions (0--10%).
First exclusive data for the $pp \to nn\pi^+\pi^+$ reaction have been obtained at CELSIUS with the WASA detector setup at a beam energy of $T_p$ = 1.1 GeV. Total and differential cross sections disagree with theoretical calculations, which predict the $\Delta\Delta$ excitation to be the dominant process at this beam energy. Instead the data require the excitation of a higher-lying $\Delta$ state, most likely the $\Delta(1600)$, to be the leading process.
Total cross section.
Distribution of the invariant mass of the PI+PI+ system.
Distribution of the cosine of the PI+_PI+ opening angle DELTA at an incident kinetic energy of 1.1 GeV.
Distribution of the invariant mass of the N N system.
Distribution of the invariant mass of the N PI system.
Distribution of the invariant mass of the N N PI system.
Distribution of the invariant mass of the N PI PI system.
Distribution of the PI+ angle in the centre-of-mass system.
Distribution of the angle of the N-N system in the centre-of-mass system.
Dihadron azimuthal correlations containing a high transverse momentum ($p_T$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p and d+Au collisions. The modification increases with the collision centrality, suggesting a path-length or energy density dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle's azimuthal angle relative to the event plane, $\phi_s=|\phi_t-\psi_{\rm EP}|$. The azimuthal correlation is studied as a function of both the trigger and associated particle $p_T$. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (ZYAM), are described. The correlation results are first discussed with subtraction of the even harmonic (elliptic and quadrangular) flow backgrounds. The away-side correlation is strongly modified, and the modification varies with $\phi_s$, with a double-peak structure for out-of-plane trigger particles. The near-side ridge (long range pseudo-rapidity $\Delta\eta$ correlation) appears to drop with increasing $\phi_s$ while the jet-like component remains approximately constant. The correlation functions are further studied with subtraction of odd harmonic triangular flow background arising from fluctuations. It is found that the triangular flow, while responsible for the majority of the amplitudes, is not sufficient to explain the $\phi_s$-dependence of the ridge or the away-side double-peak structure. ...
red data points
black histogram
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
dN/deta phis=045 deg, pt=0.151 GeV/c
dN/deta phis=045 deg, pt=0.153 GeV/c
dN/deta phis=090 deg, pt=0.51 GeV/c
dN/deta phis=090 deg, pt=12 GeV/c
dN/deta phis=4590 deg, pt=0.151 GeV/c
sigma vs phis pt=0.151 GeV/c
sigma vs phis pt=0.153 GeV/c
sigma vs phis pt=0.51 GeV/c
sigma vs phis pt=12 GeV/c
sigma vs pt phis=045 deg
sigma vs pt phis=090 deg
sigma vs pt phis=4590 deg
background uncertainty caps in the figure
flow uncertainty curves in the figure
leadage uncertainty arrows in the figure
total uncertainty boxes in the figure
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
0^{o} < phi_{s} < 45^{o}
45^{o} < phi_{s} < 90^{o}
Previous in-plane result published in 2004
Previous out-of-plane result published in 2004
3<p_{\text{T}}^{(t)}<4, 1<p_{\text{T}}^{(a)}<2 GeV/c, 0^{o} < phi_{s} < 45^{o}
3<p_{\text{T}}^{(t)}<4, 1<p_{\text{T}}^{(a)}<2 GeV/c, 45^{o} < phi_{s} < 90^{o}
3<p_{\text{T}}^{(t)}<4, 2<p_{\text{T}}^{(a)}<3 GeV/c, 0^{o} < phi_{s} < 45^{o}
3<p_{\text{T}}^{(t)}<4, 2<p_{\text{T}}^{(a)}<3 GeV/c, 45^{o} < phi_{s} < 90^{o}
4<p_{\text{T}}^{(t)}<6, 1<p_{\text{T}}^{(a)}<2 GeV/c, 0^{o} < phi_{s} < 45^{o}
4<p_{\text{T}}^{(t)}<6, 1<p_{\text{T}}^{(a)}<2 GeV/c, 45^{o} < phi_{s} < 90^{o}
4<p_{\text{T}}^{(t)}<6, 2<p_{\text{T}}^{(a)}<3 GeV/c, 0^{o} < phi_{s} < 45^{o}
4<p_{\text{T}}^{(t)}<6, 2<p_{\text{T}}^{(a)}<3 GeV/c, 45^{o} < phi_{s} < 90^{o}
3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
3<p_{\text{T}}^{(t)}<4 GeV/c
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}15^{o}
3<p_{\text{T}}^{(t)}<4 GeV/c, 75^{o}90^{o}
Cone region, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
one region, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
one region, 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
one region, 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
i region, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
Pi region, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
i region, 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
i region, 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
d+Au, 3<p_{\text{T}}^{(t)}<4 GeV/c
20-60%, 3<p_{T}^{(t)}<4 GeV/c, (a) 0^{o}<#phi_{s}<15^{o}
20-60%, 3<p_{T}^{(t)}<4 GeV/c, (b) 75^{o}<#phi_{s}<90^{o}
20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, (a) 0^{o}<phi_{s}<15^{o}
20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, (b) 75^{o}<phi_{s}<90^{o}
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 0, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 1, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 2, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 3, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 4, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 5, jet
1<p_{\text{T}}^{(a)}<2 GeV/c, jet
0-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/, slice 0, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 1, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 2, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 3, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 4, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 5, ridge
1<p_{\text{T}}^{(a)}<2 GeV/c, ridge
jet (Deltaphi|<1.0, |Deltaeta|<0.7) 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
jet (Deltaphi|<1.0, |Deltaeta|<0.7) 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
ridge (Deltaphi|<1.0, |Deltaeta|>0.7) 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
ridge (Deltaphi|<1.0, |Deltaeta|>0.7) 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
ridge (Deltaphi|<1.0, |Deltaeta|>0.7) 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
ridge (Deltaphi|<1.0, |Deltaeta|>0.7) 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
3<p_{\text{T}}^{(t)}<4 GeV/c Ridge (75^{o}<|phi_{s}|<90^{o}) / Ridge (0^{o}<|phi_{s}|<15^{o})
4<p_{\text{T}}^{(t)}<6 GeV/c Ridge (75^{o}<|phi_{s}|<90^{o}) / Ridge (0^{o}<|phi_{s}|<15^{o})
3<p_{\text{T}}^{(t)}<4 GeV/c Ridge (30^{o}<|phi_{s}|<45^{o}) / Ridge (0^{o}<|phi_{s}|<15^{o})
4<p_{\text{T}}^{(t)}<6 GeV/c Ridge (30^{o}<|phi_{s}|<45^{o}) / Ridge (0^{o}<|phi_{s}|<15^{o})
3<p_{\text{T}}^{(t)}<4 GeV/c Ridge (0^{o}<|phi_{s}|<15^{o}) / Jet (0^{o}<|phi_{s}|<15^{o})
4<p_{\text{T}}^{(t)}<6 GeV/c Ridge (0^{o}<|phi_{s}|<15^{o}) / Jet (0^{o}<|phi_{s}|<15^{o})
3<p_{\text{T}}^{(t)}<4 GeV/c, cone region
4<p_{\text{T}}^{(t)}<6 GeV/c, cone region
3<p_{\text{T}}^{(t)}<4 GeV/c, jetlike
4<p_{\text{T}}^{(t)}<6 GeV/c, jetlike
3<p_{\text{T}}^{(t)}<4 GeV/c, pi region
4<p_{\text{T}}^{(t)}<6 GeV/c, pi region
3<p_{\text{T}}^{(t)}<4 GeV/c, ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, ridge
fig17_ampl_pt_inclusive
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, cone region
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, jetlike
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, pi region
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, pi region ridge
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, ridge
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, cone region
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, jetlike
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, pi region
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, pi region ridge
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, cone region
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, jetlike
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, pi region
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, pi region ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, cone region
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, jetlike
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, pi region
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, pi region ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, ridge
jetlike eta sigma
cone peak phi sigma
jetlike phi sigma
ridge phi sigma
jetlike eta sigma
cone peak phi sigma
jetlike phi sigma
ridge phi sigma
dAu jetlike eta sigma
dAu jetlike phi sigma
cone peak centroid
cone peak centroid
cone peak centroid
cone peak centroid
cone peak centroid
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
v_{2} /3
v_{3}
v_{4}
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 0
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 1
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 2
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 3
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 4
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 5
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 0
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 1
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 2
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 3
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 4
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 5
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 0
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 1
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 2
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 3
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 4
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 5
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 0
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 1
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 2
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 3
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 4
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 5
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 0
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 1
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 2
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 3
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 4
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 5
background subtracted correlation Difference of the above results default results in Fig.21, slice 0
background subtracted correlation Difference of the above results default results in Fig.21, slice 1
background subtracted correlation Difference of the above results default results in Fig.21, slice 2
background subtracted correlation Difference of the above results default results in Fig.21, slice 3
background subtracted correlation Difference of the above results default results in Fig.21, slice 4
background subtracted correlation Difference of the above results default results in Fig.21, slice 5
d+Au background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles
difference from default results, slice 0
difference from default results, slice 1
difference from default results, slice 2
difference from default results, slice 3
difference from default results, slice 4
difference from default results, slice 5
raw signal
bkgd <v2t*v2>
bkgd <v2t>*<v2> (previous inclusive analysis)
bkgd <v2t*v2> subtracted
bkgd <v2t>*<v2> subtracted (previous inclusive analysis)
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
The gp-->etap reaction has been measured with the Crystal Ball and TAPS multiphoton spectrometers in the energy range from the production threshold of 707 MeV to 1.4 GeV (1.49 =< W >= 1.87 GeV). Bremsstrahlung photons produced by the 1.5-GeV electron beam of the Mainz Microtron MAMI-C and momentum analyzed by the Glasgow Tagging Spectrometer were used for the eta-meson production. Our accumulation of 3.8 x 10^6 gp-->etap-->3pi0p-->6gp events allows a detailed study of the reaction dynamics. The gp-->etap differential cross sections were determined for 120 energy bins and the full range of the production angles. Our data show a dip near W = 1680 MeV in the total cross section caused by a substantial dip in eta production at forward angles. The data are compared to predictions of previous SAID and MAID partial-wave analyses and to thelatest SAID and MAID fits that have included our data.
Total cross section for the reaction GAMMA P --> ETA P.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 710.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 714.5 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 718.8 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 723.0 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 727.2 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 731.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 735.5 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 739.7 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 743.9 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 748.0 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 752.2 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.6 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 756.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 760.5 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 768.8 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 772.9 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 777.1 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 781.2 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 785.3 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 789.5 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 793.6 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 797.7 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 801.8 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 805.9 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 809.8 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 814.1 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 818.2 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 822.2 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 826.3 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 830.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 834.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.6 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 838.5 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 842.5 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 846.6 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 850.6 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 854.6 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.7 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 858.7 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 862.7 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 866.7 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 870.7 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 874.7 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 878.7 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 882.7 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 886.7 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 890.6 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 894.6 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 898.5 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 902.5 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 906.5 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 910.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 914.3 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 918.3 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 922.2 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 926.1 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 930.0 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 933.9 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 937.8 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 941.6 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 945.5 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 949.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 953.2 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 957.1 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 960.9 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 964.8 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 968.6 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 972.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 976.2 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 980.0 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 983.6 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 987.7 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.7 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 991.3 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 995.1 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 998.9 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1002.6 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.4 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1006.3 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1011.9 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1019.3 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1026.8 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1034.0 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1041.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1048.6 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1055.8 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1063.0 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1070.2 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1077.3 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1084.3 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1091.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1098.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1105.3 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.6 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1112.3 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1119.1 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.7 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1125.9 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1132.7 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.5 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1139.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.6 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1146.2 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.6 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1152.8 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.6 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1159.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.6 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1165.9 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.6 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1172.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.6 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1178.9 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.6 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1185.3 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.6 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1191.7 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.6 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1198.0 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.6 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1204.2 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.7 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1210.5 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.6 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1216.7 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.6 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1222.8 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.7 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1229.0 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.6 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1235.0 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.7 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1242.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.7 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1251.3 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.7 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1260.2 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.8 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1268.9 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.7 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1277.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.7 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1287.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.7 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1300.0 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.9 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1315.1 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.8 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1335.2 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.8 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1355.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.8 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1376.2 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.9 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 1394.8 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 5.0 PCT.
We have measured inclusive data on $K^+$-meson production in $pp$ collisions at COSY J\"ulich close to the hyperon production threshold and determined the hyperon-nucleon invariant mass spectra. The spectra were decomposed into three parts: $\Lambda p$, $\Sigma^0p$ and $\Sigma^+n$. The cross section for the $\Sigma^+n$ channel was found to be much smaller than a previous measurement in that excess energy region. The data together with previous results at higher energies are compatible with a phase space dependence.
Total cross section for P P --> K+ SIGMA+ N. Errors are combined statistics and systematics.
Deduced total cross section for P P --> K+ P LAMBDA.
Deduced total cross section for P P --> K+ SIGMA0 P.
The LEPS/SPring-8 experiment made a comprehensive measurement of the spin-density matrix elements for $\gamma p \to \phi p$, $\gamma d \to \phi p n$ and $\gamma d \to \phi d$ at forward production angles. A linearly polarized photon beam at $E_{\gamma}$=1.6-2.4 GeV was used for the production of $\phi$ mesons. The natural-parity Pomeron exchange processes remains dominant nearthreshold. The unnatural-parity processes of pseudoscalar exchange is visible in the production from nucleons but is greatly reduced in the coherent production from deuterons. There is no strong $E_{\gamma}$-dependence, but some dependence on momentum-transfer. A small but finite value of the spin-density matrix elements reflecting helicity-nonconserving amplitudes in the $t$-channel is observed.
Measurements of the spin density matrix element RHO(JJ=0,MM=00) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=0,MM=10)) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=1-1) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=11) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=00) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=1,MM=10)) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=1-1) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=10)) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=1-1)) for the GAMMA P --> PHI P reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=00) for the GAMMA P --> PHI P reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=0,MM=10)) for the GAMMA P --> PHI P reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=1-1) for the GAMMA P --> PHI P reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=11) for the GAMMA P --> PHI P reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=00) for the GAMMA P --> PHI P reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=1,MM=10)) for the GAMMA P --> PHI P reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=1-1) for the GAMMA P --> PHI P reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=10)) for the GAMMA P --> PHI P reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=1-1)) for the GAMMA P --> PHI P reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=00) for the GAMMA P --> PHI P reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=0,MM=10)) for the GAMMA P --> PHI P reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=1-1) for the GAMMA P --> PHI P reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=11) for the GAMMA P --> PHI P reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=00) for the GAMMA P --> PHI P reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=1,MM=10)) for the GAMMA P --> PHI P reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=1-1) for the GAMMA P --> PHI P reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=10)) for the GAMMA P --> PHI P reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=1-1)) for the GAMMA P --> PHI P reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=00) for the GAMMA DEUT --> PHI P N reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=0,MM=10)) for the GAMMA DEUT --> PHI P N reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=1-1) for the GAMMA DEUT --> PHI P N reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=11) for the GAMMA DEUT --> PHI P N reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=00) for the GAMMA DEUT --> PHI P N reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=1,MM=10)) for the GAMMA DEUT --> PHI P N reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=1-1) for the GAMMA DEUT --> PHI P N reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=10)) for the GAMMA DEUT --> PHI P N reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=1-1)) for the GAMMA DEUT --> PHI P N reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=00) for the GAMMA DEUT --> PHI P N reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=0,MM=10)) for the GAMMA DEUT --> PHI P N reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=1-1) for the GAMMA DEUT --> PHI P N reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=11) for the GAMMA DEUT --> PHI P N reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=00) for the GAMMA DEUT --> PHI P N reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=1,MM=10)) for the GAMMA DEUT --> PHI P N reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=1-1) for the GAMMA DEUT --> PHI P N reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=10)) for the GAMMA DEUT --> PHI P N reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=1-1)) for the GAMMA DEUT --> PHI P N reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=00) for the GAMMA DEUT --> PHI P N reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=0,MM=10)) for the GAMMA DEUT --> PHI P N reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=1-1) for the GAMMA DEUT --> PHI P N reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=11) for the GAMMA DEUT --> PHI P N reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=00) for the GAMMA DEUT --> PHI P N reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=1,MM=10)) for the GAMMA DEUT --> PHI P N reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=1-1) for the GAMMA DEUT --> PHI P N reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=10)) for the GAMMA DEUT --> PHI P N reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=1-1)) for the GAMMA DEUT --> PHI P N reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=00) for the GAMMA DEUT --> PHI DEUT reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=0,MM=10)) for the GAMMA DEUT --> PHI DEUT reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=1-1) for the GAMMA DEUT --> PHI DEUT reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=11) for the GAMMA DEUT --> PHI DEUT reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=00) for the GAMMA DEUT --> PHI DEUT reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=1,MM=10)) for the GAMMA DEUT --> PHI DEUT reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=1-1) for the GAMMA DEUT --> PHI DEUT reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=10)) for the GAMMA DEUT --> PHI DEUT reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=1-1)) for the GAMMA DEUT --> PHI DEUT reaction in the helicity system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=00) for the GAMMA DEUT --> PHI DEUT reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=0,MM=10)) for the GAMMA DEUT --> PHI DEUT reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=1-1) for the GAMMA DEUT --> PHI DEUT reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=11) for the GAMMA DEUT --> PHI DEUT reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=00) for the GAMMA DEUT --> PHI DEUT reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=1,MM=10)) for the GAMMA DEUT --> PHI DEUT reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=1-1) for the GAMMA DEUT --> PHI DEUT reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=10)) for the GAMMA DEUT --> PHI DEUT reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=1-1)) for the GAMMA DEUT --> PHI DEUT reaction in the Gottfried-Jackson system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=00) for the GAMMA DEUT --> PHI DEUT reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=0,MM=10)) for the GAMMA DEUT --> PHI DEUT reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=1-1) for the GAMMA DEUT --> PHI DEUT reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=0,MM=11) for the GAMMA DEUT --> PHI DEUT reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=00) for the GAMMA DEUT --> PHI DEUT reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RE(RHO(JJ=1,MM=10)) for the GAMMA DEUT --> PHI DEUT reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element RHO(JJ=1,MM=1-1) for the GAMMA DEUT --> PHI DEUT reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=10)) for the GAMMA DEUT --> PHI DEUT reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
Measurements of the spin density matrix element IM(RHO(JJ=2,MM=1-1)) for the GAMMA DEUT --> PHI DEUT reaction in the Adair system as a function of T-Tmin for 3 incident photon energy regions.
We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at \sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 \to K+ pi- and \bar{K*0} \to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum, <pT>, are presented. The measured N(K*0)/N(K) and N(\phi)/N(K*0) ratios favor the dominance of re-scattering of decay daughters of K*0 over the hadronic regeneration for the K*0 production. In the intermediate pT region (2.0 < pT < 4.0 GeV/c), the elliptic flow parameter, v2, and the nuclear modification factor, RCP, agree with the expectations from the quark coalescence model of particle production.
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV after mixed-event background subtraction.
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ =62.4 GeV after mixed-event background subtraction.
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ =200 GeV after mixed-event background subtraction.
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ =62.4 GeV after mixed-event background subtraction.
The Kπ pair invariant mass distribution for various pT bins (top left) pT = 0.4–0.6 GeV/c in Au+Au collisions at √sNN = 200 GeV after the mixed-event background subtraction.
The Kπ pair invariant mass distribution for various pT bins (top right) pT = 0.6–0.8 GeV/c in Au+Au collisions at √sNN = 62.4 GeV after the mixed-event background subtraction.
The Kπ pair invariant mass distribution for various pT bins (bottom left) pT = 0.8–1.0 GeV/c in Au+Au collisions at √sNN = 200 GeV after the mixed-event background subtraction.
The Kπ pair invariant mass distribution for various pT bins (bottom right) pT = 1.0–1.2 GeV/c in Au+Au collisions at √sNN = 62.4 GeV after the mixed-event background subtraction.
The signal-to-background ratio for $K^{*0}$ measurements as a function of $p_T$ for different collision centrality bins (0-10%, 10-40%, 40-60%, 60-80%) in Au+Au collisions at 200 GeV.
$K^{*0}$ mass as a function of $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
$K^{*0}$ mass as a function of $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
$K^{*0}$ mass as a function of $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
$K^{*0}$ mass as a function of $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV
$K^{*0}$ width as a function of $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
$K^{*0}$ width as a function of $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
$K^{*0}$ width as a function of $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
$K^{*0}$ width as a function of $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV
The $K^{*0}$ reconstruction efficiency multiplied by the detector acceptance as a function of $p_T$ in Au+Au (|$\eta$| < 0.8) collisions at 200 GeV for different collision centrality bins (0-20% ,20-40% , 40-60%)
The $K^{*0}$ reconstruction efficiency multiplied by the detector acceptance as a function of $p_T$ in Cu+Cu (|$\eta$| < 1.0) collisions at 200 GeV for different collision centrality bins (0-20% ,20-40% , 40-60%)
Mid-rapidity $K^{*0}$ $p_T$ spectra for various collision centrality bins (0-20%, 20-40%, 40-60%, 60-80%) in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
Mid-rapidity $K^{*0}$ $p_T$ spectra for various collision centrality bins (0-20%, 20-40%, 40-60%) in Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
Mid-rapidity $K^{*0}$ $p_T$ spectra for various collision centrality bins (0-20%, 20-40%, 40-60%, 60-80%) in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Mid-rapidity $K^{*0}$ $p_T$ spectra for various collision centrality bins (0-20%, 20-40%, 40-60%) in Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV
The mid-rapidity yields dN/dy of $K^{*0}$ as a function of the average number of participating nucleons, $⟨N_{part}⟩$, for Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
The mid-rapidity yields dN/dy of $K^{*0}$ as a function of the average number of participating nucleons, $⟨N_{part}⟩$, for Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
The mid-rapidity yields dN/dy of $K^{*0}$ as a function of the average number of participating nucleons, $⟨N_{part}⟩$, for Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
The mid-rapidity yields dN/dy of $K^{*0}$ as a function of the average number of participating nucleons, $⟨N_{part}⟩$, for Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV
The mid-rapidity $K^{*0}$ $⟨p_T⟩$ as a function $⟨N_{part}⟩$ for Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
The mid-rapidity $K^{*0}$ $⟨p_T⟩$ as a function $⟨N_{part}⟩$ for Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
The mid-rapidity $K^{*0}$ $⟨p_T⟩$ as a function $⟨N_{part}⟩$ for Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
The mid-rapidity $K^{*0}$ $⟨p_T⟩$ as a function $⟨N_{part}⟩$ for Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV
The mid-rapidity $⟨p_T⟩$ of $\pi$, K, p and $K^{*0}$ as a function of $⟨N_{part}⟩$ for Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio for Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio for Cu+Cu at $\sqrt{s_{NN}}$ = 62.4 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio for Au+Au at $\sqrt{s_{NN}}$ = 200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio for Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})N(K^-)$ in Au+Au collisions divided by $N(K^{*0})N(K^-)$ ratio in p+p collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$.
Mid-rapidity $N(K^{*0})N(K^-)$ in Cu+Cu collisions divided by $N(K^{*0})N(K^-)$ ratio in p+p collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})N(K^-)$ in d+Au collisions divided by $N(K^{*0})N(K^-)$ ratio in d+Au collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias Au+Au collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias Cu+Cu collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias p+p collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias Au+Au collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias Cu+Cu collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias p+p collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio for Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio for Cu+Cu at $\sqrt{s_{NN}}$ = 62.4 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio for Au+Au at $\sqrt{s_{NN}}$ = 200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio for Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $[N(\phi)/N(K^{*0})]$ in Au+Au collisions divided by $[N(\phi)/N(K^{*0})]$ ratio in p+p collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $[N(\phi)/N(K^{*0})]$ in Cu+Cu collisions divided by $[N(\phi)/N(K^{*0})]$ ratio in p+p collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $[N(\phi)/N(K^{*0})]$ in d+Au collisions divided by $[N(\phi)/N(K^{*0})]$ ratio in p+p collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias Au+Au collisions as a function of $\sqrt{s_{NN}}$.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias Cu+Cu collisions as a function of $\sqrt{s_{NN}}$.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias p+p collisions as a function of $\sqrt{s_{NN}}$.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias Au+Au collisions as a function of $\sqrt{s_{NN}}$.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias Cu+Cu collisions as a function of $\sqrt{s_{NN}}$.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias p+p collisions as a function of $\sqrt{s_{NN}}$.
The $K^{*0}$ $v_2$ (Run IV) as a function of $p_T$ in minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
The $K^{*0}$ $v_2$ (Run II) as a function of $p_T$ in minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
The $K^{*0}$ $R_{CP}$ as a function of $p_T$ in Au+Au collisions at 62.4 and 200 GeV compared to the $R_{CP}$ of $K^0_S$ and $\Lambda$ at 200 GeV.
The $K^{*0}$ $R_{CP}$ as a function of $p_T$ in Au+Au collisions at 62.4 and 200 GeV compared to the $R_{CP}$ of $K^0_S$ and $\Lambda$ at 200 GeV.
The $K^{*0}$ $R_{CP}$ as a function of $p_T$ in Au+Au collisions at 62.4 and 200 GeV compared to the $R_{CP}$ of $K^0_S$ and $\Lambda$ at 200 GeV.
The $K^{*0}$ ~$R_{CP}$~ as a function of $p_T$ in Au+Au collisions at 62.4 and 200 GeV compared to the $R_{CP}$ of $K^0_S$ and $\Lambda$ at 200 GeV.
We report the first measurements of the kurtosis (\kappa), skewness (S) and variance (\sigma^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (\mu_B) between 200 - 20 MeV. Our measurements of the products \kappa \sigma^2 and S \sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the \sqrt(s_NN) dependence of \kappa \sigma^2. From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for \mu_B below 200 MeV.
$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 0-5 percent central collisions at midrapidity (| y |< 0.5).
$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 30-40 percent central collisions at midrapidity (| y |< 0.5).
$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 70-80 percent central collisions at midrapidity (| y |< 0.5).
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Centrality dependence of $S\sigma$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.
Centrality dependence of $S\sigma$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
Centrality dependence of $S\sigma$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Centrality dependence of $S\sigma$ for $\Delta N_p$ in Au+Au collisions from Lattice QCD Calculations.
Centrality dependence of $S\sigma$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV from Transport Model Calculations.
Centrality dependence of $S\sigma$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV from Transport Model Calculations.
Centrality dependence of $S\sigma$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations for net-baryon.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations for net-proton (No Decay).
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations.
$\sqrt{s_{NN}}$ dependence of $\kappa\sigma^2$ for net proton distributions measured at RHIC. The results are STAR data.
$\sqrt{s_{NN}}$ dependence of $\kappa\sigma^2$ for net proton distributions measured at RHIC. The results are from UrQMD net-proton.
$\sqrt{s_{NN}}$ dependence of $\kappa\sigma^2$ for net proton distributions measured at RHIC. The results are from AMPT default net-proton.
$\sqrt{s_{NN}}$ dependence of $\kappa\sigma^2$ for net proton distributions measured at RHIC. The results are from AMPT String Melting net-proton.
$\sqrt{s_{NN}}$ dependence of $\kappa\sigma^2$ for net proton distributions measured at RHIC. The results are from Therminator net-proton.
$\sqrt{s_{NN}}$ dependence of $\kappa\sigma^2$ for net proton distributions measured at RHIC. The results are from Hijing net-proton.
Structures of hadron-induced showers observed by the Pamir thick lead chambers are compared with simulations. The simulations are made for several models, VENUS, QGSJET, HDPM and the modified UA5 model, for hadron–nucleus interactions. A parameter Z , which is related to the inelasticity of hadron–Pb interactions, is defined and the Z -distribution of experimental data is compared with those of the simulations applying the same procedure of data processing to both sets of data. The Z -distribution for single-isolated hadrons is well reproduced by the models (VENUS, QGSJET and modified UA5) which give an average inelasticity 〈K h – Pb 〉=0.7 –0.8, whereas that for multi hadrons is close to the HDPM model which gives a smaller inelasticity of 〈K h – Pb 〉=0.5 –0.6. The difference of the characteristics between the two categories of hadron-induced showers is discussed.
Inelasticity of the first interaction, which defined by Kinel=1-Es/E0, where Es is the energy of the surviving particle and E0 is the incident hadron energy.
The problem of the nuclear matter jets in nucleus-nucleus collisions at 4.5 A GeV/c is discussed. The global analysis of experimental data, namely the sphericity tensor, is used to evidence such jets.
No description provided.
No description provided.
No description provided.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.