Detailed measurements of $t$-channel single top-quark production are presented. They use 20.2 fb$^{-1}$ of data collected by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8 % (top quark) and 7.8 % (top antiquark), respectively. The total cross-sections are measured to be $\sigma_{\mathrm{tot}}(tq) = 56.7^{+4.3}_{-3.8}\;$pb for top-quark production and $\sigma_{\mathrm{tot}}(\bar{t}q) = 32.9^{+3.0}_{-2.7}\;$pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be $R_t=1.72 \pm 0.09$, with an improved relative precision of 4.9 % since several systematic uncertainties cancel in the ratio. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the $t$-channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.
Predicted and observed event yields for the signal region (SR). The multijet background prediction is obtained from a binned maximum-likelihood fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution. All the other predictions are derived using theoretical cross-sections, given for the backgrounds in Sect. 6 and for the signal in Sect. 1. The quoted uncertainties are in the predicted cross-sections or in the number of multijet events, in case of the multijet process.
Definition of the fiducial phase space.
The seven input variables to the NN ordered by their discriminating power. The jet that is not $b$-tagged is referred to as $\textit{untagged}~$jet.
High-precision measurements by the ATLAS Collaboration are presented of inclusive $W^+\to\ell^+\nu$, $W^-\to\ell^-\bar{\nu}$ and $Z/\gamma^*\to\ell\ell$ ($\ell=e,\mu$) Drell-Yan production cross sections at the LHC. The data were collected in proton-proton collisions at $\sqrt{s} = 7$ TeV with an integrated luminosity of 4.6 fb$^{-1}$. Differential $W^+$ and $W^-$ cross sections are measured in a lepton pseudorapidity range $|\eta_{\ell}| = 2.5$. Differential $Z/\gamma^*$ cross sections are measured as a function of the absolute dilepton rapidity, for $|y_{\ell\ell}| < 3.6$, for three intervals of dilepton mass, $m_{\ell\ell}$, extending from 46 to 150 GeV. The integrated and differential electron- and muon-channel cross sections are combined and compared to theoretical predictions using recent sets of parton distribution functions. The data, together with the final inclusive $e^{\pm}p$ scattering cross-section data from H1 and ZEUS, are interpreted in a next-to-next-to-leading-order QCD analysis, and a new set of parton distribution functions, ATLAS-epWZ16, is obtained. The ratio of strange-to-light sea-quark densities in the proton is determined more accurately than in previous determinations based on collider data only, and is established to be close to unity in the sensitivity range of the data. A new measurement of the CKM matrix element $|V_{cs}|$ is also provided.
Fiducial cross sections times branching ratios for $W^+$, $W^-$, central and forward $Z/\gamma^*$ ($m_{ee} = 66-116$ GeV) production in the electron decay channels. The fiducial regions used for the measurement are those defined for the combined fiducial regions, except that the central electron pseudorapidity is restricted to be $|\eta|<2.47$ and excludes $1.37<|\eta|<1.52$, and the forward electron pseudorapidity excludes the region $3.16<|\eta|<3.35$. The uncertainties denote the statistical (stat), the systematic (syst) and the luminosity (lumi) uncertainties.
Fiducial cross sections times branching ratios for $W^+$, $W^-$ and $Z/\gamma^*$ ($m_{\mu\mu} = 66-116$ GeV) production in the muon decay channels. The fiducial regions used for the measurement are those defined for the combined fiducial regions, except that the muon pseudorapidity is restricted to be $|\eta|<2.4$. The uncertainties denote the statistical (stat), the systematic (syst) and the luminosity (lumi) uncertainties.
Integrated fiducial cross sections times leptonic branching ratios in the electron and muon channels and their combination with statistical and systematic uncertainties, for $W^+$, $W^-$, their sum and the $Z/\gamma^*$ process measured at $\sqrt{s}=7$ TeV. The $Z/\gamma^*$ cross section is defined for the dilepton mass window $m_{\ell\ell} = 66 - 116$ GeV. The common fiducial regions are defined in Section 2.3. The uncertainties denote the statistical (stat), the experimental systematic (syst), and the luminosity (lumi) contributions.
A measurement of the $ZZ$ production in the $\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $\ell^{-}\ell^{+}\nu\bar{\nu}$ channels $(\ell = e, \mu)$ in proton--proton collisions at $\sqrt{s} = 8$ TeV at the Large Hadron Collider at CERN, using data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS experiment in 2012 is presented. The fiducial cross sections for $ZZ\to\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $ZZ\to \ell^{-}\ell^{+}\nu\bar{\nu}$ are measured in selected phase-space regions. The total cross section for $ZZ$ events produced with both $Z$ bosons in the mass range 66 to 116 GeV is measured from the combination of the two channels to be $7.3\pm0.4\textrm{(stat)}\pm0.3\textrm{(syst)}\pm0.2\textrm{(lumi)}$ pb, which is consistent with the Standard Model prediction of $6.6^{+0.7}_{-0.6}$ pb. The differential cross sections in bins of various kinematic variables are presented. The differential event yield as a function of the transverse momentum of the leading $Z$ boson is used to set limits on anomalous neutral triple gauge boson couplings in $ZZ$ production.
The measured fiducial cross sections and the combined total cross section compared to the SM predictions. For experimental results, the statistical, systematic, and luminosity uncertainties are shown. For the theoretical predictions, the combined statistical and systematic uncertainty is shown.
The measured differential cross-section normalized to the bin width in values of the leading reconstructed dilepton pT for the 4 lepton channel. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties.
The measured differential cross-section normalized to the bin width in values of the number of reconstructed jets for the 4 lepton channel. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties.
This paper reports a search for triboson $W^{\pm}W^{\pm}W^{\mp}$ production in two decay channels ($W^{\pm}W^{\pm}W^{\mp}\rightarrow \ell^{\pm}\nu\ell^{\pm}\nu\ell^{\mp}\nu$ and $W^{\pm}W^{\pm}W^{\mp}\rightarrow \ell^{\pm}\nu\ell^{\pm}\nu{}jj$ with $\ell=e, \mu$) in proton-proton collision data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ at a centre-of-mass energy of 8 TeV with the ATLAS detector at the Large Hadron Collider. Events with exactly three charged leptons, or two leptons with the same electric charge in association with two jets, are selected. The total number of events observed in data is consistent with the Standard Model (SM) predictions. The observed 95 % confidence level upper limit on the SM $W^{\pm}W^{\pm}W^{\mp}$ production cross section is found to be 730 fb with an expected limit of 560 fb in the absence of SM $W^{\pm}W^{\pm}W^{\mp}$ production. Limits are also set on $WWWW$ anomalous quartic gauge couplings.
The measured fiducial and total cross sections. The first uncertainty is the statistical uncertainty, and the second one is the combine systematic uncertainty.
95% confidence level interval on FS0/lambda^4 provided for different values of unitarity scale lambda_FF
95% confidence level interval on FS1/lambda^4 provided for different values of unitarity scale lambda_FF
The $W$ boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton-proton collisions at a centre-of-mass energy $\sqrt{s}=$ 8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb$^{-1}$. The focus is on the contributions to $W$ + jets processes from real $W$ emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic $W$ decay.
Measured integrated cross-sections as a function of leading jet transverse momentum for the collinear region ($0.2 < \Delta R < 2.4$), the back-to-back region ($\Delta R > 2.4$) and inclusively.
Measured cross-section as a function of angular separation between the muon and the closest jet. Multiplicative correction factors for using prompt muons and prompt dressing photons in the particle-level selection, derived from ALPGEN 2.14 interfaced with PYTHIA 6.426, are also shown.
Breakdown of uncertainties in percent.
The production of $W$ boson pairs in association with one jet in $pp$ collisions at $\sqrt{s} = 8$ TeV is studied using data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The cross section is measured in a fiducial phase-space region defined by the presence of exactly one electron and one muon, missing transverse momentum and exactly one jet with a transverse momentum above 25 GeV and a pseudorapidity of $|\eta|<4.5$. The leptons are required to have opposite electric charge and to pass transverse momentum and pseudorapidity requirements. The fiducial cross section is found to be $\sigma^{\mathrm{fid,1\textrm{-}jet}}_{WW}=136\pm6($stat$)\pm14($syst$)\pm3($lumi$)$ fb. In combination with a previous measurement restricted to leptonic final states with no associated jets, the fiducial cross section of $WW$ production with zero or one jet is measured to be $\sigma^{\mathrm{fid,}\leq\mathrm{1\textrm{-}jet}}_{WW}=511\pm9($stat$)\pm26($syst$)\pm10($lumi$)$ fb. The ratio of fiducial cross sections in final states with one and zero jets is determined to be $0.36\pm0.05$. Finally, a total cross section extrapolated from the fiducial measurement of $WW$ production with zero or one associated jet is reported. The measurements are compared to theoretical predictions and found in good agreement.
Measured production cross section of WW production in the fiducial region in case one W boson decays into a prompt electron and the other one into a prompt muon. The cross section is defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 20 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos is multiplied by the sine of the azimuthal difference between lepton and the vectorial sum of the neutrinos if their azimuthal difference is smaller than PI/2. It is required to be larger than 15 GeV. The invariant mass of the leptons should exceed 10 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. Only events with exactly one jet above 25 GeV and within abs(eta)<4.5 are selected. Events containing b-jets with p T > 20 GeV and within |η| < 2.5 are rejected. Both, resonant and non-resonant WW production processes, are included in the cross sections.
Measured production cross section of WW production in the fiducial region in case one W boson decays into a prompt electron and the other one into a prompt muon. The cross section is defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 20 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos is multiplied by the sine of the azimuthal difference between lepton and the vectorial sum of the neutrinos if their azimuthal difference is smaller than PI/2. It is required to be larger than 15 GeV. The invariant mass of the leptons should exceed 10 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. Only events with zero or exactly one jet above 25 GeV and within abs(eta)<4.5 are selected. Events containing b-jets with p T > 20 GeV and within |η| < 2.5 are rejected. Both, resonant and non-resonant WW production processes, are included in the cross sections.
Measured ratio of the production cross section of WW production with one associated jet to the production cross section of WW production with zero associated jets. The ratio is determined in the in the fiducial region which is defined in case one W boson decays into a prompt electron and the other one into a prompt muon. The cross section is defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 20 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos is multiplied by the sine of the azimuthal difference between lepton and the vectorial sum of the neutrinos if their azimuthal difference is smaller than PI/2. It is required to be larger than 15 GeV. The invariant mass of the leptons should exceed 10 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. Only events with zero or exactly one jet above 25 GeV and within abs(eta)<4.5 are selected. Events containing b-jets with p T > 20 GeV and within |η| < 2.5 are rejected. Both, resonant and non-resonant WW production processes, are included in the cross sections.
A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.
The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The total elastic cross section and the observed elastic cross section within the fiducial volume.
Searches for exclusively produced $W$ boson pairs in the process $pp(\gamma\gamma) \rightarrow pW^+W^-p$ and exclusively produced Higgs boson in the process $pp(gg) \rightarrow pHp$ have been performed using $e^{\pm}\mu^{\mp}$ final states. These measurements use 20.2 fb$^{-1}$ of $pp$ collisions collected by the ATLAS experiment at a center-of-mass energy $\sqrt{s}=8$ TeV at the LHC. Exclusive production of $W^+W^-$ consistent with the Standard Model prediction is found with 3.0$\sigma$ significance. The exclusive $W^+W^-$ production cross-section is determined to be $\sigma (\gamma\gamma\rightarrow W^{+}W^{-}\rightarrow e^{\pm}\mu^{\mp} X) = 6.9 \pm 2.2 (\mathrm{stat.}) \pm 1.4 (\mathrm{sys.})$ fb, in agreement with the Standard Model prediction. Limits on anomalous quartic gauge couplings are set at 95\% confidence-level as $-1.7 \times 10^{-6} < a_0^W/\Lambda^2 < 1.7 \times 10^{-6}$ GeV$^{-2}$and $-6.4 \times 10^{-6} < a_C^W/\Lambda^2 < 6.3 \times 10^{-6}$ GeV$^{-2}$. A 95\% confidence-level upper limit on the total production cross-section for exclusive Higgs boson is set to 1.2 pb.
Observed allowed ranges for 6 dimensional aQGCs, cutoff 500 GeV.
Expected allowed ranges for 6 dimensional aQGCs, no cutoff).
Observed allowed ranges for 8 dimensional aQGCs, cutoff 500).
The result of a search for pair production of the supersymmetric partner of the Standard Model bottom quark ($\tilde{b}_1$) is reported. The search uses 3.2 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=$13 TeV collected by the ATLAS experiment at the Large Hadron Collider in 2015. Bottom squarks are searched for in events containing large missing transverse momentum and exactly two jets identified as originating from $b$-quarks. No excess above the expected Standard Model background yield is observed. Exclusion limits at 95% confidence level on the mass of the bottom squark are derived in phenomenological supersymmetric $R$-parity-conserving models in which the $\tilde{b}_1$ is the lightest squark and is assumed to decay exclusively via $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$, where $\tilde{\chi}_1^0$ is the lightest neutralino. The limits significantly extend previous results; bottom squark masses up to 800 (840) GeV are excluded for the $\tilde{\chi}_1^0$ mass below 360 (100) GeV whilst differences in mass above 100 GeV between the $\tilde{b}_1$ and the $\tilde{\chi}_1^0$ are excluded up to a $\tilde{b}_1$ mass of 500 GeV.
Expected exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario.
Signal region (SR) providing the best expected sensitivity in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane.
A search for heavy long-lived charged $R$-hadrons is reported using a data sample corresponding to 3.2$^{-1}$ of proton--proton collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived $R$-hadrons in the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively.
Distributions of beta for data and simulation after a Zmumu selection. The values given for the mean and width are taken from Gaussian functions matched to data and simulation.
Data (black dots) and background estimates (red solid line) for m_beta for the gluino R-hadron search (1000 GeV). The green shaded band illustrates the statistical uncertainty of the background estimate. The blue dashed lines illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical lines at 500 GeV show the mass selection and the last bin includes all entries/masses above.
Data (black dots) and background estimates (red solid line) for m_betagamma for the gluino R-hadron search (1000 GeV). The green shaded band illustrates the statistical uncertainty of the background estimate. The blue dashed lines illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical lines at 500 GeV show the mass selection and the last bin includes all entries/masses above.