Using the ARGUS detector at the e+e- storage ring DORIS II, we have searched for the real and imaginary part of the electric dipole formfactor d_tau of the tau lepton in the production of tau pairs at q^2=100 GeV^2. This is the first direct measurement of this CP violating formfactor. We applied the method of optimised observables which takes into account all available information on the observed tau decay products. No evidence for CP violation was found, and we derive the following results: Re(d_tau)=(1.6+-.9)*10^(-16) ecm and Im(d_tau)=(-0.2+-0.8)*10^(-16) ecm, where statistical and systematic errors have been combined.
Electric dipole moment in E(electric charge)*CM units. Systematic and statistical errors are added in quadrature.
Using the ARGUS detector at DORIS, we have observed the production of F ± mesons in e + e − annihilation at a centre of mass energy of 10 GeV through their subsequent decays into φπ ± and φπ + π − π ± . The values obtained for [ R (e + e − →FX). Branching Ratio] are (1.47 ± 0.32 ± 0.20)% and (1.63 ± 0.42 ± 0.41)% respectively. The observed mass is (1973.6 ± 2.6 ± 3.0) MeV c 2 . The F momentum spectrum is as expected for the fragmentation of c quarks into charmed mesons, but is somewhat softer than for fragmentation into D ∗ mesons. The relevant angular distributions are consistent with a spin-zero assignment of the F meson.
RESULTS OF FITS FOR SPECIFIED DECAY CHANNELS.
ACCEPTANCE CORRECTED FRAGMENTATION FUNCTION FOR THE TWO DECAY CHANNELS COMBINED. X IS PF/PMAX. DATA HAVE BEEN READ FROM THE GRAPH.
Using the ARGUS detector at DORIS we have observed the prediction of the charged D ∗ meson in e + e − annihilation at a center of mass energy of 10 GeV. The D ∗ fragmentation function has been measured using the decay channels D ∗+ → D 0 π + and D 0 → K − π + and K − π + π + π − .
RESULTS EXTRAPOLATED TO X>O. SYSTEMATIC ERRORS INCLUDED.
ERRORS ARE STATISTICAL ONLY.
Using the ARGUS detector at DORIS we have obtained evidence for a resonance which decays into an F meson and a photon. The observed mass is 2109 ± 9 ± 7 MeV, which is 144 ± 9 ± 7 MeV greater than the F meson mass. Its properties are consistent with those of the F ∗ meson with J P = 1 − .
No description provided.
Using the ARGUS detector at the DORIS II e + e − storage ring we have measured direct photons from the decay ???(1 S )→ γgg . The ratio R γ = Γ (???(1S)→ γgg )/ Γ (???(1S)→ ggg )=(3.00±0.13±0.18)% has been determined, from which we deduce values of the strong coupling constant α s =0.225±0.011±0.019 and the QCD scale parameter Λ MS =115±17±28 MeV defined in the modified minimal-subtraction scheme. The shape of the measured spectrum clearly rules out the predictions of the lowest order QCD calculations.
No description provided.
The reaction γγ → 2 π + 2 π − 2 π 0 has been studied using the ARGUS detector at the e + e − storage ring DORIS II at DESY. Production of ω mesons is observed and, in particular, the reaction γγ → ωω is seen for the first time. The cross section for γγ → ωω has an enhancement at ∼ 1.9 GeV/ c 2 of about 10 nb. The cross sections for γγ → 2 π + 2 π − 2 π 0 and γγ → ωπ + π − π 0 are also given.
Topological cross section. 14 pct systematic uncertainty not included.
Cross section for (omega omega) production. Additional 25 pct systematic error not included.
Cross section for (omega pi+ pi- pi0) where (omega omega) events have been removed. Additional 15 pct systematic error not included.
The final state K + K − π + π − has been studied in γγ interactions using the ARGUS detector at the e + e − storage ring DORIS II at DESY. Production of the vector meson pair K ∗0 (892) K ∗0 (892) is observed for the first time. The cross section for K + K − π + π − , K ∗0 K − π + +c.c. and K ∗0 K ∗0 are all found to be of the order of a few nb. In the W γγ range accessible, a mean upper limit of 0.5 nb at 95% CL is derived for φϱ 0 production.
TOPOLOGICAL CROSS SECTION.
(K*0 K*BAR0) cross section.
(K*0 K- PI+ + CC) CROSS SECTION WITH (K*0 K*BAR0) REMOVED.
Results on hyperon production are reported for data accumulated at 10 GeV centre-of-mass energy with the ARGUS detector. Signals for both the octet states Λ, Σ 0 and Ξ − and the decuplet states Σ ± (1385), Ξ 0 (1530) and Ω − are observed 1 (references to a specific state are to be interpreted as also implying the charge conjugate state), some for the first time in e + e − annihilation. Baryon rates from γ dir (1S) decays are enhanced by a factor of about 3 over the continuum.
No description provided.
No description provided.
We report the first observation of an orbitally excited baryon, the Λ(1520), in quark and gluon fragmentation. The production rate is found to be (1.15±0.21±0.16)×10 −2 and (0.80±0.17 −0.13 +0.10 )×10 −2 Λ (1520) hyperons per event in direct ϒ decays and in the continuum, respectively. In contrast to the observed situation for ground state baryons, the production of the Λ(1520) in direct ϒ decays shows little or no enhancement with respect to continuum production.
Full X range uses extrapolation from fit to dsig/dz distribution.
No description provided.
UPSI(1S) DECAYS.
Using the ARGUS detector at the DORIS II storage ring, we have observed the charmed baryons Σ c ++ and Σ c 0 , through their decays to Λ c + π ± . We have measured the mean Σ c −Λ c + mass difference as 167.6±0.3±1.6 MeV/ c 2 . The isospin mass splitting between the Σ c ++ and the Σ c 0 was found to be 1.2±0.7±0.3 MeV/ c 2 . The rate of Λ c + production from Σ c decays was found to be (36±12±11)% of the total rate of Λ c + production. The Σ c χ p spectrum was observed to be similar to that of the Λ c + , with a Peterson function parameter ϵ of 0.29±0.06.
DATA FROM UPSI(4S) WAS EXCLUDED.