Date

W and Z boson production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 1456-1461, 1995.
Inspire Record 395459 DOI 10.17182/hepdata.42368

The inclusive cross sections times leptonic branching ratios for W and Z boson production in PbarP collisions at Sqrt(s)=1.8 TeV were measured using the D0 detector at the Fermilab Tevatron collider: Sigma_W*B(W->e, nu) = 2.36 +/- 0.07 +/- 0.13 nb, Sigma_W*B(W->mu,nu) = 2.09 +/- 0.23 +/- 0.11 nb, Sigma_Z*B(Z-> e, e) = 0.218 +/- 0.011 +/- 0.012 nb, Sigma_Z*B(Z->mu,mu) = 0.178 +/- 0.030 +/- 0.009 nb. The first error is the combined statistical and systematic uncertainty, and the second reflects the uncertainty in the luminosity. For the combined electron and muon analyses we find: [Sigma_W*B(W->l,nu)]/[Sigma_Z*B(Z->l,l)] = 10.90 +/- 0.49. Assuming Standard Model couplings, this result is used to determine the width of the W boson: Gamma(W) = 2.044 +/- 0.093 GeV.

1 data table

The second DSYS error is due to luminosity.


Study of the eta(c) (s wave singlet) state of charmonium formed in anti-p p annihilations and a search for the eta(c)-prime (s wave doublet)

The E760 collaboration Armstrong, T.A. ; Bettoni, D. ; Bharadwaj, V. ; et al.
Phys.Rev.D 52 (1995) 4839-4854, 1995.
Inspire Record 395314 DOI 10.17182/hepdata.42381

The E760 Collaboration performed an experiment in the Antiproton Accumulator at Fermilab to study the two photon decay of the ηc(1 1S0) charmonium state formed in p¯p annihilations. This resulted in a new measurement of the mass Mηc=2988.3−3.1+3.3 MeV/c2 and of the product B(ηc→p¯p)×Γ(ηc→γγ) =(8.1−2.0+2.9) eV. We performed a search for the process p¯p→ηc′(2 1S0)→γγ over a limited range of center-of-mass energies. Since no signal was observed, we derived upper limits on the product of branching ratios B(ηc′→p¯p)×B(ηc′→γγ) in the center-of-mass energy range 3584≤ √s ≤3624 MeV. We observed no signal for the nonresonant process p¯+p→γ+γ and obtain upper limits.

2 data tables

No description provided.

No description provided.


Electromagnetic fission of U-238 at 600-MeV and 1000-MeV per nucleon

Rubehn, Th. ; Müller, W.F. J. ; Bassini, R. ; et al.
Z.Phys.A 353 (1995) 197-204, 1995.
Inspire Record 395587 DOI 10.17182/hepdata.42033

Electromagnetic fission of238U projectiles at E/A =600 and 1000 MeV was studied with the ALADIN spectrometer at the heavy-ion synchrotron SIS. Seven different targets (Be, C, Al, Cu, In, Au and U) were used. By considering only those fission events where the two charges added up to 92, most of the nuclear interactions were excluded. The nuclear contributions to the measured fission cross sections were determined by extrapolating from beryllium to the heavier targets with the concept of factorization. The obtained cross sections for electromagnetic fission are well reproduced by extended Weizsäcker-Williams calculations which include E1 and E2 excitations. The asymmetry of the fission fragments' charge distribution gives evidence for the excitation of the double giant-dipole resonance in uranium.

1 data table

Electromagnetic fission.


Measurement of the e+ and e- induced charged current cross-sections at HERA

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Z.Phys.C 67 (1995) 565-576, 1995.
Inspire Record 395960 DOI 10.17182/hepdata.44972

The cross sections for the charged current processes ${e~{-}p}\rightarrow{\nu_e+hadrons}$ and, for the first time, ${e~{+}p}\rightarrow{\overline{\nu}_e+hadrons}$ are measured at HERA for transverse momenta larger than 25 GeV.

2 data tables

No description provided.

No description provided.


Measurement of the diffractive structure function in deep elastic scattering at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 68 (1995) 569-584, 1995.
Inspire Record 395199 DOI 10.17182/hepdata.44902

This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in $ep$ interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of $\xpom$, the momentum fraction lost by the proton, of $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and of $Q~2$. The $\xpom$ dependence is consistent with the form \xpoma where $a=1.30\pm0.08(stat)~{+0.08}_{-0.14}(sys)$ in all bins of $\beta$ and $Q~2$. In the measured $Q~2$ range, the diffractive structure function approximately scales with $Q~2$ at fixed $\beta$. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.

11 data tables

No description provided.

No description provided.

No description provided.

More…

A Direct determination of the gluon density in the proton at low x

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Nucl.Phys.B 449 (1995) 3-21, 1995.
Inspire Record 395643 DOI 10.17182/hepdata.44979

A leading order determination of the gluon density in the proton has been performed in the fractional momentum range $1.9 \cdot 10~{-3} < x_{g/p} < 0.18$ by measuring multi-jet events from boson-gluon fusion in deep-inelastic scattering with the H1 detector at the electron-proton collider HERA. This direct determination of the gluon density was performed in a kinematic region previously not accessible. The data show a considerable increase of the gluon density with decreasing fractional momenta of the gluons.

1 data table

FG is gluon structure function. XPARTON here means the X of the gluon. For the experimental definitions of the XPARTON see paper.


The Gluon density of the proton at low x from a QCD analysis of F2

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 354 (1995) 494-505, 1995.
Inspire Record 395814 DOI 10.17182/hepdata.44945

We present a QCD analysis of the proton structure function $F_2$ measured by the H1 experiment at HERA, combined with data from previous fixed target experiments. The gluon density is extracted from the scaling violations of $F_2$ in the range $2\cdot 10~{-4}

3 data tables

No description provided.

No description provided.

No description provided.


A Study of cascade and strange baryon production in sulphur - sulphur interactions at 200-GeV/c per nucleon

The OMEGA-IONS collaboration Abatzis, S. ; Andersen, E. ; Andrighetto, A. ; et al.
Phys.Lett.B 354 (1995) 178-182, 1995.
Inspire Record 395028 DOI 10.17182/hepdata.47883

Strange and multistrange baryon and antibaryon production has been studied in sulphur sulphur interactions at 200 GeV/ c per nucleon at central rapidity using the CERN Omega Spectrometer. Particle production ratios and transverse mass spectra are presented for Λ, Ξ − , Λ and Ξ − .

8 data tables

No description provided.

No description provided.

No description provided.

More…

Search for the decay D0 ---> mu+ mu-

The BEATRICE collaboration Adamovich, M. ; Adinolfi, M. ; Alexandrov, Y. ; et al.
Phys.Lett.B 353 (1995) 563-570, 1995.
Inspire Record 396802 DOI 10.17182/hepdata.47863

We have searched for the decay D 0 → μ + μ − among 1.25 × 10 5 μ + μ − pairs produced by 350 GeV/ c π − particles interacting in copper and tungsten targets. Using a high-resolution silicon-microstrip detector followed by a large-acceptance magnetic spectrometer and a muon filter we are able to discriminate between prompt and non-prompt muons and to measure dimuon masses. No candidate compatible with a D 0 → μ + μ − decay has been found, allowing us to set an upper limit on the branching fraction B( D 0 → μ + μ − ) of 7.6 × 10 −6 at the 90% confidence level.

1 data table

NUCLEUS OF TARGET=CU+WT.


Study of t anti-t production p anti-p collisions using total transverse energy

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 75 (1995) 3997, 1995.
Inspire Record 396003 DOI 10.17182/hepdata.42358

We analyze a sample of W + jet events collected with the Collider Detector at Fermilab (CDF) in ppbar collisions at sqrt(s) = 1.8 TeV to study ttbar production. We employ a simple kinematical variable "H", defined as the scalar sum of the transverse energies of the lepton, neutrino and jets. For events with a W boson and four or more jets, the shape of the "H" distribution deviates by 3.8 standard deviations from that expected from known backgrounds to ttbar production. However this distribution agrees well with a linear combination of background and ttbar events, the agreement being best for a top mass of 180 GeV/c^2.

1 data table

A result of the study of the W + >= 4JETS data sample used in PRL 74, 2626, based on 67 pb-1 of integrated luminosity.. Different fit results due to two choices of the Q2 scale in VECBOS program (see paper).