We present a measurement of the b-quark cross section in 1.8 TeV p-p¯ collisions recorded with the Collider Detector at Fermilab using muonic b-quark decays. In the central rapidity region (‖yb‖<1.0), the cross section is 295±21±75 nb (59±14±15 nb) for pTb>21 GeV/c (29 GeV/c). Comparisons are made to previous measurements and next-to-leading order QCD calculations.
No description provided.
We have mesured the polarization of 375-GeV/c Σ+ and Σ¯ − hyperons produced by 800-GeV/c protons incident on a Cu target. We find that the Σ+ polarization rises with increasing pt to a maximum of 16% at pt=1.0 GeV/c and then decreases to 10% at pt=1.8 GeV/c. We compare this Σ+ polarization with data at lower energies. The Σ¯ − polarization has been measured for the first time. It has the same sign as the Σ+ but smaller magnitude in a similar kinematical region.
Data from Horizontal targeting.
Data from Vertical targeting.
Data from Horizontal targeting.
This paper reports a search for excited electrons at the HERA electron-proton collider. In a sample corresponding to an integrated luminosity of 26 nb − , no evidence was found for any resonant state decaying into e − γ , ν W − or e − Z 0 . Limits on the coupling strength of an excited electron have been determined for masses between 45 and 225 GeV. This study also reports the observation of the wide-angle e γ Compton scattering process.
No description provided.
We have studied c (charm) and b (bottom) quark production at the TRISTAN energy region by tagging prompt electrons from the semileptonic decays. Electrons were identified over a wide momentum range between 1 and 29 GeV/ c by a transition-radiation-detector in addition to a lead-glass calorimeter. The production cross sections of c and b quarks and the mean values of the fragmentation functions for c and b quarks were obtained as σ c = 55.9±8.8(stat.)±7.9(syst.) pb, σ b = 13.1±2.9(stat.)±1.0(syst.) pb, 〈 x c 〉 = 0.44±0.08(stat.)±0.04(syst.) and 〈 x b 〉 = 0.72±0.12(stat.)±0.08(syst.), respectively. The forward-backward asymmetries of the c and b quarks were also measured to be −0.57±0.16(stat.)±0.06(syst.) and −0.64±0.26(stat.)± 0.07(syst.), respectively. Both the cross sections and the forward-backward asymmetries of the c and b quarks are consistent with the standard model.
No description provided.
No description provided.
The forward-backward asymmetries of$$e^ + e^ - \to Z^0 \to b\bar b and e^ + e^ - \to Z^0 \to c\bar c$$
Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit, neglecting the effects of B0-BBAR0 mixing.
Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit and correcting for B0-BBAR0 mixing. The second systematic error is due to the uncertainty of the mixing factor.
Measurement of the asymmetry in c-quark production on the Z0 peak using a two parameter fit.
High resolution measurements of the reaction C12(γ,n) at Eγ∼58 MeV are presented. The distribution of strength to the resolved bound final states in C11 is compared with that of B11 obtained in previous analogous (γ,p) measurements and the implications for the theoretical description of (γ,N) reactions are discussed. These new results confirm the importance of two-nucleon effects in intermediate energy photon absorption and highlight inadequacies in state-of-the-art microscopic calculations of (γ,N) reactions.
No description provided.
We report the full reconstruction of χc mesons through the decay chain χc→J/ψ γ, J/ψ→μ+μ−, using data obtained at the Collider Detector at Fermilab in 2.6±0.2 pb−1 of p¯p collisions at √s =1.8 TeV. This exclusive χc sample is used to measure the χc-meson production cross section times branching fractions. We obtain σ×B=3.2±0.4(stat)−1.1+1.2(syst) nb for χc mesons decaying to J/ψ with pT>6.0 GeV/c and pseudorapidity ‖η‖<0.5. From this and the inclusive J/ψ cross section we calculate the inclusive b-quark cross section to be 12.0±4.5 μb for pTb>8.5 GeV/c and ‖yb‖<1.
No description provided.
This determination of the b-quark cross section uses an earlier CDF measurement of the pbar p --> J/PSI X cross section of 6.88 +- 1.11 nb. See Abe et al. PRL 69, 3704.
We report results from Fermilab experiment E769 on the differential cross sections of D*± charm vector mesons with respect to Feynman-x (xF) and transverse momentum (PT), and on the atomic mass dependence of the production. The D* mesons were produced by a 250 GeV π beam on a target of Be, Al, Cu, and W foils. The dσdxF distribution is fit by the form ((1−xF)n) with n=3.5±0.3±0.1, the dσdPT2 distribution by exp(−b×PT2) with b=0.70±0.07±0.04 GeV−2, and the cross section A dependence by Aα with α=1.00±0.07±0.02. These results are compared to the equivalent parameters for the production of pseudoscalar D0 and D± charm mesons.
Data are in arbitrary units and are the weighted averages bin-by-bin for the 3 D0 modes KPI, K3PI and KPIPI0.
Data are in arbitrary units and are the weighted averages bin-by-bin for the 3 modes KPI, K3PI and KPIPI0.
Results of fit to DSIG/DXL distribution of the form (1-XL)**POWER in the XL range 0.1 to 0.6.
None
THE AZIMUTHAL ANGLE DISTRIBUTIONS OF PI0 HAVE BEEN FITTED BY: D(N)/D(PHI)=N*(1+CONST(Q=1)*COS(PHI)+CONST(Q=2)*COS(2*PHI)), WHERE PHI IS THE AZIMUTHAL ANGLEOF PI0 RELATIVE TO THE FOLLOWING COORDINATE SYSTEM: Z AXIS DIRECTED ALONG BEAM MOMENTUM, X AXIS DIRECTED ALONG TRANSVERSE MOMENTUM CONSTRUCTED FROM TRANSVERSE MOMENTA OF THE FINAL STATE PARTICLES (SEE PAPER). THE 17 PCT OF ALL NONPERIPHERAL EVENTS HAS BEEN REMOVED (SEE PAPER).
THE AZIMUTHAL ANGLE DISTRIBUTIONS OF CHARGED PARTICLES HAVE BEEN FITTED BY : D(N)/D(PHI)=N *(1+CONST(Q=1)*COS(PHI)+CONST(Q=2)*COS(2*PHI)), WHERE PHI IS THEAZIMUTHAL ANGLE OF CHARGED PARTICLE RELATIVE TO THE FOLLOWING COORDINATE SYSTEM : Z AXIS DIRECTED ALONG BEAM MOMENTUM, X AXIS DIRECTED ALONG TRANSVERSE MOMENTU M CONSTRUCTED FROM TRANSVERSE MOMENTA OF THE FINAL STATE PARTICLES (SEE PAPER). A systematic error of 0.03 has been estimated for CONST(Q=1) and CONST(Q= 2).
THE AZIMUTHAL ANGLE DISTRIBUTIONS OF NEUTRONS HAVE BEEN FITTED BY: D(N)/D (PHI)=N *(1+CONST(Q=1)*COS(PHI)+CONST(Q=2)*COS(2*PHI)), WHERE PHI IS THE AZIMUTHAL ANGLE OF NEUTRON RELATIVE TO THE FOLLOWING COORDINATE SYSTEM: Z AXIS DIRECTEDALONG BEAM MOMENTUM, X AXIS DIRECTED ALONG TRANSVERSE MOMENTUM CONSTRUCTED FRO M TRANSVERSE MOMENTA OF THE FINAL STATE PARTICLES (SEE PAPER). A systematic error of 0.03 has been estimated for CONST(Q=1) and CONST(Q= 2).
A study of the fragmentation properties of charm and bottom quarks intoD mesons is presented. From 263 700Z0 hadronic decays collected in 1991 with the DELPHI detector at the LEP collider,D0,D+ andD*+ are reconstructed in the modesK−π+,K−π+K+ andD0π+ followed byD0→K−π+, respectively. The fractional decay widths\(\Gamma {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} \mathord{\left/ {\vphantom {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} {\Gamma _h }}} \right. \kern-\nulldelimiterspace} {\Gamma _h }}\) are determined, and first results are presented for the production ofD mesons from\(c\bar c\) and\(b\bar b\) events separately. The average energy fraction ofD*± in charm quark fragmentation is found to be 〈XE(D*)〉c=0.487±0.015 (stat)±0.005 (sys.). Assuming that the fraction ofDs and charm-baryons produced at LEP is similar to that around 10 GeV, theZ0 partial width into charm quark pairs is determined to beΓc/Γh=0.187±0.031 (stat)±0.023 (sys). The probability for ab quark to fragment into\(\bar B_s \) orb-baryons is inferred to be 0.268±0.094 (stat)±0.100 (sys) from the measured probability that it fragments into a\(\bar B^0 \) orB−.
Using full data sample.
Using full data sample with proper time > 1 ps to enrich (b bbar) content.
Data with Delta(L) > 1.