The differential cross section has been measured for the reaction γ+p→K+ + Λ atk=1.3 GeV andCM angles between 6 ° and 90 ° and for the reaction γ+p→K+ + ∑0 atk=1.45 GeV andCM angles between 10 ° and 85 °. In addition 10 differential cross sections of the two reactions in the energy region betweenk=1.327 and 1.416 GeV and angles between θcm=11.2 ° and 62 ° have been obtained. The results are compared with Regge-cut-model fits by Meyer zu Hörste and Pfeil1 taking into account all availableK+ photoproduction data.
No description provided.
No description provided.
No description provided.
We measured the polarization parameter P in neutron-proton elastic scattering near the backward direction, using a polarized proton target. Measurements covered the range of incident neutron momenta from 1.0 to 5.5 GeV/ c and of four-momentum transfer squared u from −0.005 to −0.5 (GeV/ c ) 2 .
'1'. '2'. '3'. '4'.
No description provided.
No description provided.
The np and nd total cross sections have been measured directly with a neutron beam with momenta of 4.0 ± 0.6 and 5.7 ± 0.6 GeV/ c . The data are compared with the previous nucleon-nucleon and nucleon-deuteron results, and the deuteron screening term was also evaluated. The measured total cross section are 43.1 ± 0.6 and 80.3 ± 1.9 mb at 4.0 GeV/ c and 42 ± 0.6 and 77.8 ± 1.3 mb at 5.7 GeV/ c .
No description provided.
No description provided.
No description provided.
The reaction γ⊥,∥p→π+n has been studied with linearly polarized photons of energy 3.0 GeV at −t values between 0.15 and 1.2 (GeVc)2. The asymmetry A+=(dσ⊥−dσ∥)(dσ⊥+dσ∥) is found to be positive throughout this four-momentum-transfer range, implying the dominance of natural parity exchange in the t channel. Comparison of dσ⊥(γ⊥p→π+n) and dσ⊥p→π−p) from a previous experiment indicates strong interference between the isoscalar and isovector photon amplitudes for photons polarized perpendicular to the production plane.
No description provided.
No description provided.
No description provided.
The asymmetry A=(dσ⊥−dσ∥)(dσ⊥+dσ∥) of the differential cross section for the reaction γd→π−pp has been studied with linearly polarized photons of 3.0 GeV at squared four-momentum-transfers between 0.15 and 2.0 (GeV/c)2. The asymmetry was found to be positive at −t values below 0.3 (GeV/c)2, dipping to negative values between 0.4 and 0.6 (GeV/c)2, and then rising again to positive values above 0.7 (GeV/c)2.
Axis error includes +- 11/11 contribution.
The ratio of π− to π+ off deuterium was measured as a function of incident photon energy from 600 to 1700 MeV in the forward direction. The ratio shows a broad dip around a center-of-mass energy of 1700 MeV, resulting presumably from the collective effect of several isospin-½ resonances in this energy region. Such a change in the ratio is reflected in the rapid variation of the isoscalar photoproduction amplitude since we found the isovector photoproduction amplitude to be a relatively smooth function decreasing slowly with increasing incident photon energy.
No description provided.
We have measured the asymmetry of the cross section for γp→π+n from a polarized target at 5 and 16 GeV. The range of four-momentum transfer was 0.02<~−t<~1.0 GeV2. The π+ mesons were produced in a polarized butanol target and detected with the Stanford Linear Accelerator Center 20−GeVc spectrometer. A sizable asymmetry was found at both 5 and 16 GeV, a typical value being -0.6 near −t=0.3 GeV2. A small amount of data on the asymmetry of other photoproduction processes was also obtained.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Electron-proton elastic scattering cross sections have been measured at four-momentum transfers between 1.0 and 3.0 (GeV/ c ) 2 and at electron scattering angles between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E and G M were determined. The results indicate that G E ( q 2 ) decreases faster with increasing q 2 than G M ( q 2 ).
Axis error includes +- 2.5/2.5 contribution (Due to counting statisticss, separation of elastic events, beam monitoring, incident energy, scattering angle, proton absorption, solid angle, target length and density).
CONST(NAME=MU) is the magnetic moment.
Neutron-proton and neutron-deuteron total cross sections have been measured directly at the Princeton-Pennsylvania Accelerator using time of flight to determine the incident neutron momentum. The results cover the region from 700 to 2900 MeVc with a typical accuracy of 0.8% for each of 26 momentum bins. The data are not consistent with the most precise previous measurements in the same momentum range.
No description provided.