The final results of an experimental investigation of the reaction γ+n→p+π− performed with a deuterium bubble chamber at the 1 GeV Frascati electrosynchrotron are presented. Total and differential cross-sections on neutrons are extracted by means of the spectator model, the reliability of which has been checked by numerous tests and is extensively discussed. The problems of a possible isotensor component in the electromagnetic current, the time-reversal invariance of the electromagnetic interactions and the photoproduction of the Roper resonance are considered in detail.
No description provided.
No description provided.
No description provided.
Backward scattering in the reaction KL0p→pKS0 is studied in the momentum interval 1.0 to 7.5 GeV/c. Comparison of KL0p→pKS0 and K+p→pK+ backward scattering, where respectively Σ exchange and Λ plus Σ exchange can contribute in the u channel, reveals that dσdΩ180°(KL0p→pKS0dσdΩ180°(K+p→pK+) above the resonance region. This result provides direct evidence for the dominance of the Λ contribution over the Σ contribution in the K+p→pK+ production amplitude.
No description provided.
The reaction π−+p→π−+p has been studied in the 15-in. bubble chamber at the Princeton-Pennsylvania Accelerator. The elastic scattering cross section was determined to be 8.5 ± 0.2 mb. The forward peak fits to an exponential in t with a slope of 8.1 ± 0.2 (GeV/c)−2. The forward differential cross section dσdΩ(0)=17.9±0.7 mb/sr. A fit of the center-of-mass angular distribution to Legendre polynomials needed terms up to the 12th order, corresponding to the highest nonzero partial wave of L=6.
No description provided.
FORWARD D(SIG)/DOMEGA IS 17.9 +- 0.7 MB/SR. SLOPE IS 8.1 +- 0.2 GEV**-2 (-T = 0.1 TO 0.4 GEV**2).
OTHER 2.27 GEV/C DATA ALSO QUOTED.
We present results on the differential cross sections for the process K + n → K 0 p extracted from the reaction K + d → K 0 pp measured at 13 momenta between 0.64 and 1.51 GeV/ c .
THESE TOTAL CROSS SECTIONS WERE PRESENTED WITH MORE EXPERIMENTAL DETAILS IN G. GIACOMELLI ET AL., NP B37, 577 (1972).
REACTION HAS A SPECTATOR PROTON. THESE ARE NOT FREE NEUTRON CROSS SECTIONS. A 250 MEV/C MOMENTUM CUT IS APPLIED TO THE SPECTATOR MOMENTUM AND D(SIG)/DOMEGA THEN NORMALIZED TO THE UNCUT TOTAL CROSS SECTION FOR K+ DEUT --> K0 P P.
We have measured the differential cross-section for the reaction p p → π + Λ − at 5 GeV /c , the π + being in t he cm angular range 0.47 < cos θ p π + cm < 0.98 , corresponding to 0.12 < − t < 2.40 (GeV/ c ) 2 . The angular distribution has a forward peak with a differential cross-section d σ d ω = 4.1 ± 1.6 μ b / sr for 0.94 < cos θ p π + cm < 0.96 .
No description provided.
No description provided.
Differential cross sections for single photoproduction of neutral pion on neutron have been measured at different c.m. angles for photon energies, between 450–800 MeV.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
Axis error includes +- 10/10 contribution (COMPOUNDED WITH STATISTICAL ERROR).
Axis error includes +- 10/10 contribution (COMPOUNDED WITH STATISTICAL ERROR).
Axis error includes +- 10/10 contribution (COMPOUNDED WITH STATISTICAL ERROR).
None
No description provided.
No description provided.
No description provided.
Total and differential cross sections are presented for the reactions K − p → K − p and K − p → K o n at 13 points in the c.m. energy range 1915–2168 MeV. An energy-dependent partial-wave analysis is carried out on these data together with the polarisation measurements of Daum et al. [1] and the total cross section measurements [2] within this energy range. The well known Σ(1915), Σ(2030) and Λ(2100) are observed and their resonance parameters measured. Structure is also found in the D 05 and F 07 waves. An SU(3) analysis of the 5 2 + octet, 7 2 + decuplet and 7 2 − singlet gives generally good agreement between theory and experiment except that the elasticity of the Σ(1915) is experimentally rather larger than predicted.
No description provided.
No description provided.
DETERMINED BY NORMALIZING AT ZERO DEG TO TOTAL CROSS SECTIONS VIA THE OPTICAL THEOREM.