The differential cross section for charge-exchange scattering of negative pions by hydrogen has been observed at 230, 260, 290, 317, and 371 Mev. The reaction was observed by detecting one gamma ray from the π0 decay with a scintillation-counter telescope. A least-squares analysis was performed to fit the observations to the function dσdω=Σl=15alPl−1(cosθ) in the c.m. frame. The best fit to our experimental measurements requires only s- and p-wave scattering. The results (in mb) are: The least-squares analysis indicates that d-wave scattering is not established in this energy range.
No description provided.
No description provided.
No description provided.
Total cross sections for negative pions on protons were measured at laboratory energies of 230, 290, 370, 427, and 460 Mev. The measurements were made in the same pion beams as and at energies identical with those of our π−−p differential scattering experiments. Comparisons of the total and differential scattering can be made with the dispersion theory at a given energy without introducing the systematic errors that would normally enter due to uncertainties in the parameters of more than one pion beam. The measured total cross sections are found to agree within statistics with other measured values, and with the sums of elastic, inelastic, and charge-exchange cross sections measured at this laboratory. The results are:
No description provided.
None
No description provided.
The differential cross section and recoil-proton polarization in π−−p elastic scattering at 310-MeV incident-pion energy has been measured. The differential cross section was measured at 28 angles in the angular region 25<~θlab<~160 deg. The fractional rms errors were typically 3%. The reaction was observed by counting the scattered pions emerging from a liquid-hydrogen target with a counter telescope consisting of scintillation and Čerenkov counters. Simultaneously, the recoil-proton polarization was measured at four angles in the angular region 114<θc.m.<146 deg. The recoil protons from the liquid-hydrogen target were scattered from a carbon target and the left-right asymmetry was measured. Scintillation counters were used throughout to detect the particles.
No description provided.
No description provided.
We measured elastic-scattering angular distributions for π++p scattering at 1.5, 2.0, and 2.5 BeV/c using spark chambers to detect scattered pions and protons. A bump that decreases in amplitude with increasing momentum is observed in the backward hemisphere in the 1.5- and 2.0-BeV/c distributions, but is not observed in the 2.5-BeV/c distributions. It appears reasonable to attribute this phenomenon to the 1.45-BeV/c resonance observed in the π++p total cross section. The data are compared with π−+p data and are found to support the theoretical prediction that the scattering cross sections for both charge states should become equal at high energies. We fit the angular distributions with a power series in cosθ*, and compare the extrapolated values for the scattering cross section in the backward direction with the calculation of the neutron-exchange pole contribution to the cross section. The "elementary" neutron-pole term contribution is calculated to be 90 mb/sr at 2.0 BeV/c, in violent disagreement with the extrapolated value, ≈0.5 mb/sr.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
A 14-in. liquid-hydrogen-filled bubble chamber in a 17.5-kG magnetic field was exposed to a beam of negative pions produced by the Cosmotron at Brookhaven National Laboratory. About 26 000 pictures were taken and examined for the following final states: (1) elastic scattering (π−p); (2) π+ production (π−π+n); (3) π0 production (π−π0p); (4) neutrals. Values for the cross sections for these processes are σ(elastic)=17.56±0.43 mb, σ(π+)=7.14±0.23 mb, σ(π0)=4.65±0.17 mb. The elastic-scattering angular dependence in the c.m. system is fitted by a power-series expansion in cosθ and gives the following coefficients: a0=0.27±0.02, a1=1.48±0.11, a2=3.86±0.22, a3=−0.29±0.53, a4=−0.65±0.28, a5=1.69±0.52 (units: mb/sr). Cross sections for multiple-pion production were also measured: σ(π−π+π0n)=0.33±0.04 mb, σ(π−π+π−p)=0.08±0.02 mb. The total neutral cross section was σ(neutrals)=11.78±0.43 mb; the total charged events cross section was σ(charged)=29.76±0.69 mb; and the total cross section was σ(total)=41.54±0.82 mb. For single-pion production events, two-body mass distributions and angular distributions were compared with the predictions of the Olsson-Yodh isobar model.
Axis error includes +- 0.0/0.0 contribution (?////STATISTICAL YIELD DOMINATES).
The interactions of 775 MeV (kinetic energy) π−-mesons in a hydrogen bubble chamber have been studied. Total and partial crosssections have been determined with the following results: σ (total) = (39.0±1.6) mb, σ (elastic)=(14.8±0.7) mb, σ (π− + p → all neutrals) = (9.0 ± 0.5) mb, σ (π− + p = π− + π+ + n) = (9.8 ± 0.5) mb, and σ (π− + p = π− + p + π0) = (4.8 ± 0.3) mb. The elastic-scattering angular distribution has been fitted with a Legendre polynomial series terminated at the fifth order. Various angular and effective-mass distributions of single-π production are presented and discussed in terms of the Olsson-Yodh and O.P.E. models.
No description provided.
No description provided.
No description provided.