The charged particle production in proton-proton collisions is studied with the LHCb detector at a centre-of-mass energy of ${\sqrt{s} =7}$TeV in different intervals of pseudorapidity $\eta$. The charged particles are reconstructed close to the interaction region in the vertex detector, which provides high reconstruction efficiency in the $\eta$ ranges $-2.5<\eta<-2.0$ and $2.0<\eta<4.5$. The data were taken with a minimum bias trigger, only requiring one or more reconstructed tracks in the vertex detector. By selecting an event sample with at least one track with a transverse momentum greater than 1 GeV/c a hard QCD subsample is investigated. Several event generators are compared with the data; none are able to describe fully the multiplicity distributions or the charged particle density distribution as a function of $\eta$. In general, the models underestimate the charged particle production.
Charged particle multiplicity distribution in minimum bias events for different pseudorapidity bins. The first quoted uncertainty is statistical and the second is systematic.
Charged particle multiplicity distribution in hard QCD events for different pseudorapidity bins. The first quoted uncertainty is statistical and the second is systematic.
Charged particle multiplicity distribution for minimum bias events in the full pseudorapidity range. The first quoted uncertainty is statistical and the second is systematic.
Scaled momentum distributions for the strange hadrons K0s and Lambda/bar Lambda were measured in deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 330 pb-1. The evolution of these distributions with the photon virtuality, Q2, was studied in the kinematic region 10
The measured scaled momentum distributions for K0S production as a function of Q^2 in six XP regions.
The measured scaled momentum distributions for K0S production as a function of XP in five Q**2 regions.
The measured scaled momentum distributions for K0S production as a function of XP in two Q^2 regions.
A measurement is presented of the charged hadron multiplicity in hadronic PbPb collisions, as a function of pseudorapidity and centrality, at a collision energy of 2.76 TeV per nucleon pair. The data sample is collected using the CMS detector and a minimum-bias trigger, with the CMS solenoid off. The number of charged hadrons is measured both by counting the number of reconstructed particle hits and by forming hit doublets of pairs of layers in the pixel detector. The two methods give consistent results. The charged hadron multiplicity density dN(ch)/d eta, evaluated at eta=0 for head-on collisions, is found to be 1612 +/- 55, where the uncertainty is dominated by systematic effects. Comparisons of these results to previous measurements and to various models are also presented.
The measured charged hadron multiplicity density as a function of the centrality.
The measured charged hadron multiplicity density divided by Npart/2 as a function of the pseudorapidity in 4 centrality bins.
The measured charged hadron multiplicity density at pseudorapidiy=0 divided by Npart/2 as a function of the number of participants.
A measurement of the underlying activity in scattering processes with a hard scale in the several GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 and 7 TeV, using data collected by the CMS experiment at the LHC. The production of charged particles with pseudorapidity |eta| < 2 and transverse momentum pT > 0.5 GeV/c is studied in the azimuthal region transverse to that of the leading set of charged particles forming a track-jet. A significant growth of the average multiplicity and scalar-pT sum of the particles in the transverse region is observed with increasing pT of the leading track-jet, followed by a much slower rise above a few GeV/c. For track-jet pT larger than a few GeV/c, the activity in the transverse region is approximately doubled with a centre-of-mass energy increase from 0.9 to 7 TeV. Predictions of several QCD-inspired models as implemented in PYTHIA are compared to the data.
Fully corrected average charged particle multiplicity per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 0.9 TeV.
Fully corrected average charged particle multiplicity per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 7 TeV.
Ratio of the fully corrected charged particle multiplicity at 7 TeV to that at 0.9 TeV.
The spectra of strange hadrons are measured in proton-proton collisions, recorded by the CMS experiment at the CERN LHC, at centre-of-mass energies of 0.9 and 7 TeV. The K^0_s, Lambda, and Xi^- particles and their antiparticles are reconstructed from their decay topologies and the production rates are measured as functions of rapidity and transverse momentum. The results are compared to other experiments and to predictions of the PYTHIA Monte Carlo program. The transverse momentum distributions are found to differ substantially from the PYTHIA results and the production rates exceed the predictions by up to a factor of three.
The rapidity production spectra per NSD event spectra for KS mesons at 0.9 and 7 TeV.
The transverse momentum production spectra per NSD event spectra for KS mesons at 0.9 and 7 TeV.
The rapidity production spectra per NSD event spectra for LAMBDA mesons at 0.9 and 7 TeV.
A search for Z bosons in the mu^+mu^- decay channel has been performed in PbPb collisions at a nucleon-nucleon centre of mass energy = 2.76 TeV with the CMS detector at the LHC, in a 7.2 inverse microbarn data sample. The number of opposite-sign muon pairs observed in the 60--120 GeV/c2 invariant mass range is 39, corresponding to a yield per unit of rapidity (y) and per minimum bias event of (33.8 ± 5.5 (stat) ± 4.4 (syst)) 10^{-8}, in the |y|<2.0 range. Rapidity, transverse momentum, and centrality dependencies are also measured. The results agree with next-to-leading order QCD calculations, scaled by the number of incoherent nucleon-nucleon collisions.
The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event in the range |yrap| < 2.0.
The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event as a function of rapidity, and the nuclear modification factor RAA derived by using a POWHEG proton-proton reference.
The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event as a function of transverse momentum, and the nuclear modificationfactor RAA derived by using a POWHEG proton-proton reference.
Hadronic event shapes have been measured in proton-proton collisions at sqrt(s)=7 TeV, with a data sample collected with the CMS detector at the LHC. The sample corresponds to an integrated luminosity of 3.2 inverse picobarns. Event-shape distributions, corrected for detector response, are compared with five models of QCD multijet production.
Distribution of the logarithm of the central transverse thrust for events with jet transverse momentum > 30 GeV, jet |pseudorapidity| < 1.3 and leading the jet transverse momentum from 90 to 125 GeV/c,.
Distribution of the logarithm of the central thrust minor for events with jet transverse momentum > 30 GeV, jet |pseudorapidity| < 1.3 and leading the jet transverse momentum from 90 to 125 GeV/c,.
Distribution of the logarithm of the central transverse thrust for events with jet transverse momentum > 30 GeV, jet |pseudorapidity| < 1.3 and leading the jet transverse momentum from 125 to 200 GeV/c,.
Samples of inclusive photon+2 jet and photon+3 jet events collected by the D0 experiment with an integrated luminosity of about 1fb^-1 in ppbar collisions at sqrt{s}=1.96 TeV are used to measure cross sections as a function of the angle in the plane transverse to the beam direction between the transverse momentum (pT) of the photon+leading jet system (jets are ordered in pT) and pT of the other jet for photon+2 jet, or pT sum of the two other jets for photon+3 jet events. The results are compared to different models of multiple parton interactions (MPI) in the PYTHIA and SHERPA Monte Carlo (MC) generators. The data indicate a contribution from events with double parton (DP) interactions and are well described by predictions provided by the PYTHIA MPI models with pT-ordered showers and by SHERPA with the default MPI model. The photon+2 jet data are also used to determine the fraction of events with DP interactions as a function of the azimuthal angle and as a function of the second jet pT.
The normalised differential cross section of the azmiuthal decorrelation variable DELTA for the GAMMA+3JET sample for the PT of the second jet in the range 15 TO 30 GeV.
The normalised differential cross section of the azmiuthal decorrelation variable DELTA for the GAMMA+2JET sample for the PT of the second jet in the range 15 TO 20 GeV.
The normalised differential cross section of the azmiuthal decorrelation variable DELTA for the GAMMA+2JET sample for the PT of the second jet in the range 20 TO 25 GeV.
Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}}$ = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in $|\eta|<0.8$ and $0.3 < p_T < 20$ GeV/$c$ are compared to the expectation in pp collisions at the same $\sqrt{s_{\rm NN}}$, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor $R_{\rm AA}$. The result indicates only weak medium effects ($R_{\rm AA} \approx $ 0.7) in peripheral collisions. In central collisions, $R_{\rm AA}$ reaches a minimum of about 0.14 at $p_{\rm T}=6$-7GeV/$c$ and increases significantly at larger $p_{\rm T}$. The measured suppression of high-$p_{\rm T}$ particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.
PT distributions of primary charged particles at mid-rapidity in central and peripheral PB-PB collisions.
PT distributions of primary charged particles at mid-rapidity in central and peripheral PB-PB collisions estimated from scaled PP data as described in the text of the paper.
Measurments of RAA, the nuclear modification factor (rate of PB-PB to P P cross section) in the central region.