Double pomeron exchange studies in p anti-p interactions at 0.63-TeV

Joyce, D. ; Kernan, A. ; Lindgren, M. ; et al.
Phys.Rev.D 48 (1993) 1943-1948, 1993.
Inspire Record 35714 DOI 10.17182/hepdata.22678

The properties of events having the topology and kinematic features of double Pomeron exchange are described. The data were taken at the CERN pp¯ collider at s=0.63 TeV in the UA1 detector. A calorimeter trigger was used to isolate events in which a central cluster of particles was separated from forward particles by large rapidity gaps. The invariant mass M of the central cluster (possibly a colliding Pomeron-Pomeron system) covers the range 10-70 GeV/c2. The M dependence of charged particle multiplicity distributions in these double Pomeron events is strikingly different from their s dependence in pp and pp¯ interactions.

0 data tables match query

Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at sqrt(s) = 0.9 and 2.36 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 02 (2010) 041, 2010.
Inspire Record 845323 DOI 10.17182/hepdata.54829

Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(charged)/d(eta) for |eta| < 0.5, are 3.48 +/- 0.02 (stat.) +/- 0.13 (syst.) and 4.47 +/- 0.04 (stat.) +/- 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in p-pbar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date.

0 data tables match query