We report a new measurement of dijet production by color-singlet exchange in pp¯ collisions at s=1.8TeV at the Fermilab Tevatron. In a sample of events with two jets of transverse energy ETjet>20GeV, pseudorapidity in the range 1.8<|ηjet|<3.5, and η1η2<0, we find that a fraction R=[1.13±0.12(stat)±0.11(syst)]% has a pseudorapidity gap within |η|<1 between the jets that can be attributed to color-singlet exchnage. The fraction R shows no significant dependence on ETjet or on the pseudorapidity separation between the jets.
Q=SS and Q=OS means same-side and opposite-side events.
The results of a measurement of the ratio R = Y(phi pi+ pi-) / Y(omega pi+ pi-) for antiproton annihilation at rest in a gaseous and in a liquid hydrogen target are presented. It was found that the value of this ratio increases with the decreasing of the dipion mass, which demonstrates the difference in the phi and omega production mechanisms. An indication on the momentum transfer dependence of the apparent OZI rule violation for phi production from the 3S1 initial state was found.
(C=CORRECTED) the ratio with phase space correctio. The annihilation in liquid hydrogen (C=LIQUID) and in hydrogen at 3 atm (C=P).
Quark and gluon jets with the same energy, 24 GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on a track impact parameter method. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity, Evidence is presented which shows that the corresponding differences between gluon and b jets are significantly smaller. In a statistically limited comparison the multiplicity in c jets was found to be comparable with that observed for the jets of mixed quark flavour.
B-jets are identified with the lepton-tag analysis.
The same kinematics as in the table 1.
We have measured the multiplicity of charm quark pairs arising from gluon splitting in a sample of about 3.5 million hadronic Z 0 decays. By selecting a 3-jet event topology and tagging charmed hadrons in the lowest energy jet using leptons, we established a signature of heavy quark pair production from gluons. The average number of gluons splitting into a c c pair per hadronic event was measured to be n g→c c =(2.27±0.28±0.41) × 10 −2 .
Axis error includes +- 8.4/8.4 contribution (Total generator error for the electron channel due to the uncertainties in parameters of Peterson model of fragmentation, LAMBDA_QCD, ALPHA_S, Lund fragmentation parameters and lepton decay model).
The production of B ∗ mesons in Z decays has been measured at LEP with the L3 detector. A sample of Z → b b events was obtained by tagging muons in 1.6 million hadronic Z decays collected in 1991, 1992 and 1993. A signal with a peak value of E γ = 46.3 ± 1.9 (stat) MeV in the B rest frame energy spectrum was interpreted to come from the decay B ∗ → γB. The inclusive production ratio of B ∗ mesons relative to B mesons was determined from a fit to the spectrum to be N B ∗ (N B ∗ + N B ) = 0.76 ± 0.08 ± 0.06 , where the first error is statistical and the second is systematic.
No description provided.
We have measured the rate of D ∗± meson production inside the jets produced in p p collisions at √ s = 630 GeV. For jets in the transverse energy range 15< E T <60 GeV we find a production rate of 0.10±0.04±0.03 D ∗± per jet, which is in good agreement with perturbative QCD calculations. In addition, we find that the D ∗± fragmentation distribution is strongly peaked towards low z consistent with gluon splitting as the dominant production mechanism.
No description provided.