A search is presented for a new scalar resonance, X, decaying to a standard model Higgs boson and another new scalar particle, Y, in the final state where the Higgs boson decays to a $\mathrm{b\bar{b}}$ pair, while the Y particle decays to a pair of photons. The search is performed in the mass range 240$-$100 \GeV for the resonance X, and in the mass range 70$-$800 GeV for the particle Y, using proton-proton collision data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 132 fb$^{-1}$. In general, the data are found to be compatible with the standard model expectation. Observed (expected) upper limits at 95% confidence level on the product of the production cross section and the relevant branching fraction are extracted for the X $\to$ YH process, and are found to be within the range of 0.05$-$2.69 (0.08$-$1.94) fb, depending on $m_\mathrm{X}$ and $m_\mathrm{Y}$. The most significant deviation from the background-only hypothesis is observed for X and Y masses of 300 and 77 GeV, respectively, with a local (global) significance of 3.33 (0.65) standard deviations.
A search for the violation of the charge-parity ($CP$) symmetry in the production of top quarks in association with Z bosons is presented, using events with at least three charged leptons and additional jets. The search is performed in a sample of proton-proton collision data collected by the CMS experiment at the CERN LHC in 2016-2018 at a center-of-mass energy of 13 TeV and in 2022 at 13.6 TeV, corresponding to a total integrated luminosity of 173 fb$^{-1}$. For the first time in this final state, observables that are odd under the $CP$ transformation are employed. Also for the first time, physics-informed machine-learning techniques are used to construct these observables. While for standard model (SM) processes the distributions of these observables are predicted to be symmetric around zero, $CP$-violating modifications of the SM would introduce asymmetries. Two $CP$-odd operators $\mathcal{O}_\text{tW}^\text{I}$ and $\mathcal{O}_\text{tZ}^\text{I}$ in the SM effective field theory are considered that may modify the interactions between top quarks and electroweak bosons. The obtained results are consistent with the SM prediction within two standard deviations, and exclusion limits on the associated Wilson coefficients of $-$2.7 $\lt$$c_\text{tW}^\text{I}$$\lt$ 2.5 and $-$0.2 $\lt$$c_\text{tZ}^\text{I}$$\lt$ 2.0 are set at 95% confidence level. The largest discrepancy is observed in $c_\text{tZ}^\text{I}$ where data is consistent with positive values, with an observed local significance with respect to the SM hypothesis of 2.5 standard deviations, when only linear terms are considered.
A search for pseudoscalar or scalar bosons decaying to a top quark pair ($\mathrm{t\bar{t}}$) in final states with one or two charged leptons is presented. The analyzed proton-proton collision data was recorded at $\sqrt{s}$ = 13 TeV by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. The invariant mass $m_\mathrm{t\bar{t}}$ of the reconstructed $\mathrm{t\bar{t}}$ system and variables sensitive to its spin and parity are used to discriminate against the standard model $\mathrm{t\bar{t}}$ background. Interference between pseudoscalar or scalar boson production and the standard model $\mathrm{t\bar{t}}$ continuum is included, leading to peak-dip structures in the $m_\mathrm{t\bar{t}}$ distribution. An excess of the data above the background prediction, based on perturbative quantum chromodynamics (QCD) calculations, is observed near the kinematic $\mathrm{t\bar{t}}$ production threshold, while good agreement is found for high $m_\mathrm{t\bar{t}}$. The data are consistent with the background prediction if the contribution from the production of a color-singlet ${}^1\mathrm{S}_0^{[1]}$$\mathrm{t\bar{t}}$ quasi-bound state $η_\mathrm{t}$, predicted by nonrelativistic QCD, is added. Upper limits at 95% confidence level are set on the coupling between the pseudoscalar or scalar bosons and the top quark for boson masses in the range 365$-$1000 GeV, relative widths between 0.5 and 25%, and two background scenarios with or without $η_\mathrm{t}$ contribution.
The traditional quark model accounts for the existence of baryons, such as protons and neutrons, which consist of three quarks, as well as mesons, composed of a quark-antiquark pair. Only recently has substantial evidence started to accumulate for exotic states composed of four or five quarks and antiquarks. The exact nature of their internal structure remains uncertain. This paper reports the first measurement of quantum numbers of the recently discovered family of three all-charm tetraquarks, using data collected by the CMS experiment at the Large Hadron Collider from 2016 to 2018. The angular analysis techniques developed for the discovery and characterization of the Higgs boson have been applied to the new exotic states. Here we show that the quantum numbers for parity $P$ and charge conjugation $C$ symmetries are found to be +1. The spin $J$ of these exotic states is consistent with 2$\hbar$, while 0$\hbar$ and 1$\hbar$ are excluded at 95% and 99% confidence level, respectively. The $J^{PC} = 2^{++}$ assignment implies particular configurations of constituent spins and orbital angular momenta, which constrain the possible internal structure of these tetraquarks.
A measurement of the Higgs boson mass and width via its decay to two Z bosons is presented. Proton-proton collision data collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb$^{-1}$ at a center-of-mass energy of 13 TeV is used. The invariant mass distribution of four leptons in the on-shell Higgs boson decay is used to measure its mass and constrain its width. This yields the most precise single measurement of the Higgs boson mass to date, 125.04 $\pm$ 0.12 GeV, and an upper limit on the width $\Gamma_\mathrm{H}$$\lt$ 330 MeV at 95% confidence level. A combination of the on- and off-shell Higgs boson production decaying to four leptons is used to determine the Higgs boson width, assuming that no new virtual particles affect the production, a premise that is tested by adding new heavy particles in the gluon fusion loop model. This result is combined with a previous CMS analysis of the off-shell Higgs boson production with decay to two leptons and two neutrinos, giving a measured Higgs boson width of 3.0 $^{+2.0}_{-1.5}$ MeV, in agreement with the standard model prediction of 4.1 MeV. The strength of the off-shell Higgs boson production is also reported. The scenario of no off-shell Higgs boson production is excluded at a confidence level corresponding to 3.8 standard deviations.
A search for the production of a W boson and a Higgs boson through vector boson scattering (VBS) is presented, using CMS data from proton-proton collisions at $\sqrt{s}$ = 13 TeV collected from 2016 to 2018. The integrated luminosity of the data sample is 138 fb$^{-1}$. Selected events must be consistent with the presence of two jets originating from VBS, the leptonic decay of the W boson to an electron or muon, possibly also through an intermediate $\tau$ lepton, and a Higgs boson decaying into a pair of b quarks, reconstructed as either a single merged jet or two resolved jets. A measurement of the process as predicted by the standard model (SM) is performed alongside a study of beyond-the-SM (BSM) scenarios. The SM analysis sets an observed (expected) 95% confidence level upper limit of 14.3 (9.9) on the ratio of the measured VBS WH cross section to that expected by the SM. The BSM analysis, conducted within the so-called $\kappa$ framework, excludes all scenarios with $\lambda_\mathrm{WZ}$ $\lt$ 0 that are consistent with current measurements, where $\lambda_\mathrm{WZ}$ = $\kappa_\mathrm{W} / \kappa_\mathrm{Z}$ and $\kappa_\mathrm{W}$ and $\kappa_\mathrm{Z}$ are the HWW and HZZ coupling modifiers, respectively. The signficance of the exclusion is beyond 5 standard deviations, and it is consistent with the SM expectation of $\lambda_\mathrm{WZ}$ = 1.
A measurement is presented of the cross section in proton-proton collisions for the production of two W bosons and one Z boson. It is based on data recorded by the CMS experiment at the CERN LHC at center-of-mass energies $\sqrt{s}$ = 13 and 13.6 TeV, corresponding to an integrated luminosity of 200 fb$^{-1}$. Events with four charged leptons (electrons or muons) in the final state are selected. Both nonresonant WWZ production and ZH production, with the Higgs boson decaying into two W bosons, are reported. For the first time, the two processes are measured separately in a simultaneous fit. Combining the two modes, signal strengths relative to the standard model (SM) predictions of 0.75 $^{+0.34}_{-0.29}$ and 1.74 $^{+0.71}_{-0.60}$ are measured for $\sqrt{s}$ = 13 and 13.6 TeV, respectively. The observed (expected) significance for the triboson signal is 3.8 (2.5) standard deviations for $\sqrt{s}$ = 13.6 TeV, thus providing the first evidence for triboson production at this center-of-mass energy. Combining the two modes and the two center-of-mass energies, the inclusive signal strength relative to the SM prediction is measured to be 1.03 $^{+0.31}_{-0.28}$, with an observed (expected) significance of 4.5 (5.0) standard deviations.
A search for resonances in top quark pair ($\text{t}\bar{\text{t}}$) production in final states with two charged leptons and multiple jets is presented, based on proton-proton collision data collected by the CMS experiment at the CERN LHC at $\sqrt{s}$ = 13 TeV, corresponding to 138 fb$^{-1}$. The analysis explores the invariant mass of the $\text{t}\bar{\text{t}}$ system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic $\text{t}\bar{\text{t}}$ threshold compared to the nonresonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ($^1$S$^{[1]}_0$) quasi-bound toponium state, as predicted by nonrelativistic quantum chromodynamics. Using a simplified model for $^1$S$^{[1]}_0$ toponium, the cross section of the excess above the pQCD prediction is measured to be 8.8 $^{+1.2}_{-1.4}$ pb.
The structure of nucleons is multidimensional and depends on the transverse momenta, spatial geometry, and polarization of the constituent partons. Such a structure can be studied using high-energy photons produced in ultraperipheral heavy-ion collisions. The first measurement of the azimuthal angular correlations of exclusively produced events with two jets in photon-lead interactions at large momentum transfer is presented, a process that is considered to be sensitive to the underlying nuclear gluon polarization. This study uses a data sample of ultraperipheral lead-lead collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV, corresponding to an integrated luminosity of 0.38 nb$^{-1}$, collected with the CMS experiment at the LHC. The measured second harmonic of the correlation between the sum and difference of the two jet momenta is found to be positive, and rising, as the dijet momentum increases. A well-tuned model that has been successful at describing a wide range of proton scattering data from the HERA experiments fails to describe the observed correlations, suggesting the presence of gluon polarization effects.
A search is presented for rare decays of the Z and Higgs bosons to a photon and a J/$\psi$ or a $\psi$(2S) meson, with the charmonium state subsequentially decaying to a pair of muons. The data set corresponds to an integrated luminosity of 123 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC. No evidence for branching fractions of these rare decay channels larger than predicted in the standard model is observed. Upper limits at 95% confidence level are set: $\mathcal{B}$(H $\to$ J/$\psi \gamma$) $\lt$ 2.6 $\times$ 10$^{-4}$, $\mathcal{B}$(H $\to$ $\psi$(2S)$\gamma$) $\lt$ 9.9 $\times$ 10$^{-4}$, $\mathcal{B}$(Z $\to$ J/$\psi \gamma$) $\lt$ 0.6 $\times$ 10$^{-6}$, and $\mathcal{B}$(Z $\to$ $\psi$(2S)$\gamma$) $\lt$ 1.3 $\times$ 10$^{-6}$. The ratio of the Higgs boson coupling modifiers $\kappa_\mathrm{c} / \kappa_\gamma$ is constrained to be in the interval ($-$157, $+$199) at 95% confidence level. Assuming $\kappa_\gamma = 1$, this interval becomes ($-$166, $+$208).