None
None
The total e + e − annihilation onto hadron has been measured at CM energies between 33.00 and 36.72 GeV and between 38.66 and 46.78 GeV in steps of 20 and 30 MeV respectively. The average of the ratio R = σ ( e + e − → hadrons )/ σ is 〈 R 〉=3.85±0.12 and 〈 R 〉=4.04±0.10 for the two energy ranges. The systematic error on 〈 R 〉 is 0.31. Both values are consistent with the expectation for the known coloured quarks u, d, s, c and b. No evidence was found for the production of new quarks. If the largest fluctuation in R is interpreted as a narrow resonance, it corresponds to a product of the electronic width and the hadronic branching ratio Γ ee B had >2.9 keV at the 95% confidence level, well below the value expected for the toponium vector ground state with charge 2 3 e . The observed number of aplanar final states rules out the continuum production of a a new heavy flavour with pointlike cross section up to a CM energy of 45.4 GeV for a quarck charge of 1 3 e . and up to 46.6 GeV for 2 3 e at the 95% confidence level.
We present the results obtained with the magnetic detector DM1 at the Orsay storage ring ACO for the reaction e + e − → π + π − π 0 from 483 to 1100 MeV in the center of mass. Our data show without ambiguity an interference effect between the ω and φ mesons, which corresponds to a negative coupling constant product ratio Re( g γω g ω →3 π / g γφ g φ →3 π ) ; however our measurements above the φ, performed using kinematical analysis, can only be explained by a higher energy contribution. In addition, the parameters of the ω have been obtained with an improved accuracy compared to other experiments, and particularly the branching ratio B ω →e + e − = (6.75±0.69) × 10 −5 . We confirm that the reaction e + e − → π + π − π 0 proceeds essentially via a quasi-two-body state ϱπ , at the energy of the φ.
We have measured the production cross section for K s 0 in e + e − annihilation from 3.6 to 5.0 GeV center of mass energy. A substantial increase of the K s 0 yield is observed around 4 GeV in qualitative agreement with the charm hypothesis.
Using the solenoidal magnetic detector PLUTO, we have measured the total cross section for e + e − annihilation into hadrons. Results are presented for center of mass energies between 3.6 and 4.8 GeV, and in the regions of the J ψ (3.1) and ψ(3.7) resonances. We also present results for the 2 prong cross section in the energy range 3.6 to 4.8 GeV.
This report reviews the experimental investigation of high energy e + e − interactions by the MARK J collaboration at PETRA, the electron-positron colliding beam accelerator at DESY in Hamburg, Germany. The physics objectives include studies of several purely electromagnetic processes and hadronic final states, which further our knowledge of the nature of the fundamental constituents and of their strong, electromagnetic and weak interactions. Before discussing the physics results, the main features and the principal components of the MARK J detector are discussed in terms of design, function, and performance. Several aspects of the on-line data collection and the off-line analysis are also outlined. Results are presented on tests of quantum electrodynamics using e + e − → e + e − , μ + μ − and τ + τ − , on the measurement of R , the ratio of the hadronic to the point-like muon pair cross section, on the search for new quark flavors, on the discovery of three jet events arising from the radiation of hard noncollinear gluons as predicted by quantum chromodynamics, and on the determination of the strong coupling constant α s .
Data on inclusive kaon production in e+e− annihilations at energies in the vicinity of the ϒ(4S) resonance are presented. A clear excess of kaons is observed on the ϒ(4S) compared to the continuum. Under the assumption that the ϒ(4S) decays into BB¯, a total of 3.38±0.34±0.68 kaons per ϒ(4S) decay is found. In the context of the standard B-decay model this leads to a value for (b→c)(b→all) of 1.09±0.33±0.13.
We have searched for possible narrow resonances produced in e + e − annihilation at Adone, in the mass regions 1910–2545 MeV and 2970–3090 MeV. No evidence has been found for narrow resonances, within the sensitivity of the present work: we deduce an upper limit on the energy integrated resonant cross section of about 10% of the J/ψ(3100) corresponding value.
Using the data sets of 17.3 pb$^{-1}$ collected at $\sqrt{s}=$ 3.773 GeV and 6.5 pb$^{-1}$ collected at $\sqrt{s}=$ 3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 18 exclusive light hadron final states produced in $e^+e^-$ annihilation at the two energy points.