Date

Subject_areas

The Forward - backward asymmetry of e+ e- ---> b anti-b and e+ e- ---> c anti-c using leptons in hadronic Z0 decays

The OPAL collaboration Acton, P.D. ; Akers, R. ; Alexander, G. ; et al.
Z.Phys.C 60 (1993) 19-36, 1993.
Inspire Record 356097 DOI 10.17182/hepdata.14320

The forward-backward asymmetries of$$e^ + e^ - \to Z^0 \to b\bar b and e^ + e^ - \to Z^0 \to c\bar c$$

5 data tables match query

Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit, neglecting the effects of B0-BBAR0 mixing.

Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit and correcting for B0-BBAR0 mixing. The second systematic error is due to the uncertainty of the mixing factor.

Measurement of the asymmetry in c-quark production on the Z0 peak using a two parameter fit.

More…

Measurement of $\Z^0 \to b \bar{b}$ Decay Properties

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 241 (1990) 416-424, 1990.
Inspire Record 295040 DOI 10.17182/hepdata.29716

We have measured the properties of Z 0 → b b decays using a sample of 944 inclusive muon events, corresponding to 18 000 hadron events obtained with the L3 detector at LEP. We measured the partial decay width of the Z 0 into b b , Γ b b =353±48 MeV , and we determined the vector coupling of the Z 0 to the b quark; g rmv 2 (b)=0.095±0.047. We measured the forward-backward charge asymmetry in e + e − → b b events at √ s ≈ M v , and obtained A b b =13.3±9.9% .

1 data table match query

BOTTOM quark charge asymmetry measurement.


A Measurement of the forward - backward charge asymmetry in hadronic decays of the Z0

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 294 (1992) 436-450, 1992.
Inspire Record 336774 DOI 10.17182/hepdata.29004

We present a measurement of the forward-backward charge asymmetry in hadronic decays of the Z 0 using data collected with the OPAL detector at LEP. The forward-backward charge asymmetry was measured using a weight function method which gave the number of forward events on a statistical basis. In a data sample of 448 942 hadronic Z 0 decays, we have observed a charge asymmetry of A h = 0.040±0.004 (stat.)±0.006 (syst.)±0.002 (B 0 B 0 mix.), taking into account the effect of B 0 B 0 mixing. In the framework of the standard model, this asymmetry corresponds to an effective weak mixing angle averaged over five quark flavours of sin 2 θ W = 0.2321 ± 0.0017 ( stat. ) ± 0.0027 ( syst. ) ± 0.0009 (B 0 B 0 mix.). The result agrees with the value obtained from the Z 0 line shape and lepton pair forward-backward asymmetry.

2 data tables match query

No description provided.

The second systematic error is due to the uncertainty in the correction for B.BBAR mixing which had been applied to the data.


A measurement of the charm and bottom forward-backward asymmetries using D mesons at LEP.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 73 (1997) 379-395, 1997.
Inspire Record 421995 DOI 10.17182/hepdata.47946

A measurement of the charm and bottom forward-backward asymmetry in e+e− annihilations is presented at energies on and around the peak of the Z0 resonance. Decays of the Z0 into charm and bottom quarks are tagged using D mesons identified in about 4 million hadronic decays of the Z0 boson recorded with the OPAL detector at LEP between 1990 and 1995. Approximately 33000 D mesons are tagged in seven different decay modes. From these the charm and bottom asymmetries are measured in three energy ranges around the Z0 peak: \(\matrix {A_{\rm FB}^{\rm c}=0.039\pm 0.051\pm 0.009\cr A_{\rm FB}^{\rm c}=0.063\pm 0.012\pm 0.006\cr A_{\rm FB}^{\rm c}=0.158\pm 0.041\pm 0.011}\)\(\matrix {A_{\rm FB}^{\rm b}=0.086\pm 0.108\pm 0.029\cr A_{\rm FB}^{\rm b}=0.094\pm 0.027\pm 0.022\cr A_{\rm FB}^{\rm b}=0.021\pm 0.090\pm 0.026}\)\(\matrix{\langle E_{cm}\rangle =89.45\ {\rm GeV}\cr \langle E_{cm}\rangle =91.22\ {\rm GeV}\cr \langle E_{cm}\rangle =93.00\ {\rm GeV}}\) The results are in agreement with the predictions of the standard model and other measurements at LEP.

1 data table match query

Forward-backward asymmetry.


Precision measurements of the neutral current from hadron and lepton production at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 58 (1993) 219-238, 1993.
Inspire Record 352696 DOI 10.17182/hepdata.14495

New measurements of the hadronic and leptonic cross sections and of the leptonic forward-backward asymmetries ine+e− collisions are presented. The analysis includes data recorded up to the end of 1991 by the OPAL experiment at LEP, with centre-of-mass energies within ±3 GeV of the Z0 mass. The results are based on a recorded total of 454 000 hadronic and 58 000 leptonic events. A model independent analysis of Z0 parameters based on an extension of the improved Born approximation is presented leading to test of lepton universality and an interpretation of the results within the Standard Model framework. The determination of the mass and width of the Z0 benefit from an improved understanding of the LEP energy calibration.

5 data tables match query

Additional systematic error of 0.003.

Forward-backward asymmetry from counting number of events. Additional systematic error of 0.003.

Forward-backward asymmetry from maximum likelihood fit to cos(theta) distribution. Additional systematic error of 0.003.

More…

Search for a Z-prime at the Z resonance

The L3 collaboration Adriani, O. ; Aguilar-Benitez, M. ; Ahlen, S.P. ; et al.
Phys.Lett.B 306 (1993) 187-196, 1993.
Inspire Record 355489 DOI 10.17182/hepdata.28919

The search for an additional heavy gauge boson Z′ is described. The models considered are based on either a superstring-motivated E 6 or on a left-right symmetry and assume a minimal Higgs sector. Cross sections and asymmetries measured with the L3 detector in the vicinity of the Z resonance during the 1990 and 1991 running periods are used to determine limits on the Z-Z′ gauge boson mixing angle and on the Z′ mass. For Z′ masses above the direct limits, we obtain the following allowed ranges of the mixing angle, θ M at the 95% confidence level: −0.004 ⪕ θ M ⪕ 0.015 for the χ model, −0.003 ⪕ θ M ⪕ 0.020 for the ψ model, −0.029 ⪕ θ M ⪕ 0.010 for the η model, −0.002 ⪕ θ M ⪕ 0.020 for the LR model,

2 data tables match query

Data taken during 1990.

Data taken during 1991.


Measurement of the e+ e- --> b anti-b and e+ e- --> c anti-c forward backward asymmetries at the Z0 resonance

The L3 collaboration Adriani, O. ; Aguilar-Benitez, M. ; Ahlen, S. ; et al.
Phys.Lett.B 292 (1992) 454-462, 1992.
Inspire Record 339089 DOI 10.17182/hepdata.29017

We have measured the forward-backward asymmetry in e + e − → b b and e + e − → c c processes using hadronic events containing muons or electrons. The data sample corresponds to 4100000 hadronic decays of the Z 0 . From a fit to the single lepton and dilepton p and p T spectra, we determine A b b =0.086±0.015±0.007 and A c c =0.083±0.038±0.027 at the effective center-of-mass energy √ s =91.24 GeV. These measurements yield a value of the electroweak mixing angle sin 2 θ w =0.2336±0.0029 .

3 data tables match query

No description provided.

No description provided.

No description provided.


A Measurement of the Z0 ---> b anti-b forward - backward asymmetry

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 252 (1990) 713-721, 1990.
Inspire Record 301901 DOI 10.17182/hepdata.29506

We have measured the forward-backward asymmetry in Z 0 → b b decays using hadronic events containing muons and electrons. The data sample corresponds to 118 200 hadronic events at √ s ≈ M z . From a fit to the single and dilepton p and P ⊥ spectra, we determine A b b =0.130 −0.042 +0.044 including the correction for B 0 − B 0 mixing.

2 data tables match query

Observed asymmetry from fit to single and dilepton P and PT spectra assuming no mixing.

Asymmetry corrected for the effects of mixing using the L3 observed mixing parameter chi(B) = 0.178 +0.049,-0.040.


The Forward - backward asymmetry for charm quarks at the Z pole

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 352 (1995) 479-486, 1995.
Inspire Record 394753 DOI 10.17182/hepdata.47932

From 1.4 million hadronic Z decays collected by the ALEPH detector at LEP, an enriched sample of Z → cc̄ events is extracted by requiring the presence of a high momentum D ∗± . The charm quark forward-backward charge asymmetry at the Z pole is measured to be A FB 0. c = (8.0 ± 2.4) % corresponding to an effective electroweak mixing angle of sin 2 θ W eff = 0.2302 ± 0.0054.

2 data tables match query

Value of SIN2TW(eff) from CQ-quark asymmetries.

No description provided.


Determination of A(b)(FB) using jet charge measurements in Z decays.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Phys.Lett.B 426 (1998) 217-230, 1998.
Inspire Record 468671 DOI 10.17182/hepdata.49559

An improved measurement of the forward-backward asymmetry in Z →b b ̄ decays is presented, based on a sample of 4.1 million hadronic Z decays collected by ALEPH between 1991 and 1995. Data are analysed as a function of polar angle of the event axis and b purity. The event tagging efficiency and mean b -jet hemisphere charge are measured directly from data. From the measured forward-backward jet charge asymmetry, the b quark asymmetry at s =m Z is determined to be: A b FB =0.1017±0.0038(stat.)±0.0032(syst.). In the context of the Standard Model this corresponds to a value of the effective weak mixing angle of sin 2 θ W eff =0.23109±0.00096.

2 data tables match query

Only statistical errors are given for sqrt(s) = 89.43 and 92.97 GeV.

The combination of the data on and off peak of Z-boson.