Measurement of D$^0$ meson photoproduction in ultraperipheral heavy ion collisions

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-HIN-24-003, 2025.
Inspire Record 2968597 DOI 10.17182/hepdata.156822

This Letter reports the first measurement of photonuclear D$^0$ meson production in ultraperipheral heavy ion collisions. The study is performed using lead-lead collision data, with an integrated luminosity of 1.38 nb$^{-1}$, collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 5.36 TeV. Photonuclear events, where one of the colliding nuclei breaks up and the other remains intact, are selected based on breakup neutron emissions and by requiring no particle activity in a large rapidity interval in the direction of the photon-emitting nucleus. The D$^0$ mesons are reconstructed via the D$^0$$\to$ K$^-$$π^+$ decay channel, with the cross section measured as a function of D$^0$ meson transverse momentum and rapidity. The results are compared with next-to-leading-order perturbative QCD calculations that employ recent parametrizations of the lead nuclear parton distribution functions, as well as with predictions based on the color glass condensate framework. This measurement is the first photonuclear collision study characterizing parton distribution functions of lead nuclei for parton fractional momenta $x$ (relative to the nucleon) ranging approximately from a few 10$^{-4}$ to 10$^{-2}$ for different hard energy scale $Q^2$ selections.

4 data tables

The mass distribution of D$^{0}$ decaying to K$^{-}$ and $\pi^{+}$ for $5 < p_{\mathrm{T}} < 8$ GeV and $0.0 < y < 1.0$ in 0nXn ultraperipheral PbPb collisions.

The d$^{2}\sigma$/dydp$_{\mathrm{T}}$ production cross section of D$^{0}$ for $2 < p_{\mathrm{T}} < 5$ GeV in ultraperipheral PbPb collisions.

The d$^{2}\sigma$/dydp$_{\mathrm{T}}$ production cross section of D$^{0}$ for $5 < p_{\mathrm{T}} < 8$ GeV in ultraperipheral PbPb collisions.

More…

First measurement of A = 4 (anti)hypernuclei at the LHC

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2024-265, 2024.
Inspire Record 2842103 DOI 10.17182/hepdata.158317

In this Letter, the first evidence of the ${}^4_{\bar{\Lambda}}\overline{\mathrm{He}}$ antihypernucleus is presented, along with the first measurement at the LHC of the production of (anti)hypernuclei with mass number $A=4$, specifically (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$. In addition, the antiparticle-to-particle ratios for both hypernuclei (${}^4_{\bar{\Lambda}}\overline{\mathrm{H}}$ / ${}^4_{\Lambda}\mathrm{H}$~and ${}^4_{\bar{\Lambda}}\overline{\mathrm{He}}$ / ${}^4_{\Lambda}\mathrm{He}$) are shown, which are sensitive to the baryochemical potential of the strongly-interacting matter created in heavy-ion collisions. The results are obtained from a data sample of central Pb--Pb collisions, collected during the 2018 LHC data-taking at a center-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} = $ 5.02 TeV. The yields measured for the average of the charge-conjugated states are found to be $[0.78 \; \pm \; 0.19 \; \mathrm{(stat.)} \; \pm \; 0.17 \; \mathrm{(syst.)}] \times 10^{-6}$ for the (anti)${}^4_{\Lambda}\mathrm{H}$ and $[1.08 \; \pm \; 0.34 \; \mathrm{(stat.)} \; \pm \; 0.20 \; \mathrm{(syst.)}] \times 10^{-6}$ for the (anti)${}^4_{\Lambda}\mathrm{He}$, and the measured antiparticle-to-particle ratios are in agreement with unity. The presence of (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$ excited states is expected to strongly enhance the production yield of these hypernuclei. The yield values exhibit a combined deviation of 3.3$\sigma$ from the theoretical ground-state-only expectation, while the inclusion of the excited states in the calculations leads to an agreement within 0.6$\sigma$ with the present measurements. Additionally, the measured (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$ masses are compatible with the world-average values within the uncertainties.

3 data tables

average pT-integrated yield of particle and antiparticle of both analyzed (anti)hypernuclei in Pb-Pb collisions in 0-10% V0M centrality class

mass measurement of both analyzed (anti)hypernuclei in Pb-Pb collisions in 0-10% V0M centrality class

antiparticle-to-particle ratio of the analyzed (anti)hypernuclei in Pb-Pb collisions in 0-10% V0M centrality class


A search for heavy Higgs bosons decaying into vector bosons in same-sign two-lepton final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 200, 2023.
Inspire Record 2176695 DOI 10.17182/hepdata.129285

A search for heavy Higgs bosons produced in association with a vector boson and decaying into a pair of vector bosons is performed in final states with two leptons (electrons or muons) of the same electric charge, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb$^{-1}$. The observed data are in agreement with Standard Model background expectations. The results are interpreted using higher-dimensional operators in an effective field theory. Upper limits on the production cross-section are calculated at 95% confidence level as a function of the heavy Higgs boson's mass and coupling strengths to vector bosons. Limits are set in the Higgs boson mass range from 300 to 1500 GeV, and depend on the assumed couplings. The highest excluded mass for a heavy Higgs boson with the coupling combinations explored is 900 GeV. Limits on coupling strengths are also provided.

16 data tables

Comparison between data and SM predictions for the meff distributions in the boosted SR. The background predictions are obtained through a background-only simultaneous fit and are shown as filled histograms. The entries in overflow are included in the last bin. The size of the combined statistical and systematic uncertainty for the sum of the fitted background is indicated by the hatched band. The ratio of the data to the sum of the fitted background is shown in the lower panel. Two benchmark signal samples, as indicated in the legend, are also shown as unstacked unfilled histograms normalised to the integrated luminosity of the data using the theoretical cross-sections.

Comparison between data and SM predictions for the meff distributions in the resolved SR. The background predictions are obtained through a background-only simultaneous fit and are shown as filled histograms. The entries in overflow are included in the last bin. The size of the combined statistical and systematic uncertainty for the sum of the fitted background is indicated by the hatched band. The ratio of the data to the sum of the fitted background is shown in the lower panel. Two benchmark signal samples, as indicated in the legend, are also shown as unstacked unfilled histograms normalised to the integrated luminosity of the data using the theoretical cross-sections.

Expected 95% CL upper limits on the production of a heavy Higgs boson as functions of fw and fww with mass equal to 300 GeV.

More…

Observation of Two Excited B$^+_\mathrm{c}$ States and Measurement of the B$^+_\mathrm{c}$(2S) Mass in pp Collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 122 (2019) 132001, 2019.
Inspire Record 1718338 DOI 10.17182/hepdata.88919

Signals consistent with the B$^+_\mathrm{c}$(2S) and B$^{*+}_\mathrm{c}$(2S) states are observed in proton-proton collisions at $\sqrt{s} =$ 13 TeV, in an event sample corresponding to an integrated luminosity of 140 fb$^{-1}$, collected by the CMS experiment during the 2016, 2017, and 2018 LHC running periods. These excited $\bar{\mathrm{b}}$c states are observed in the B$^+_\mathrm{c}\pi^+\pi^-$ invariant mass spectrum, with the ground state B$^+_\mathrm{c}$ reconstructed through its decay to J/$\psi\,\pi^+$. The two states are well resolved from each other and are observed with a significance exceeding five standard deviations. The mass of the B$^+_\mathrm{c}$(2S) meson is measured to be 6871.0 $\pm$ 1.2 (stat) $\pm$ 0.8 (syst) $\pm$ 0.8 (B$^+_\mathrm{c}$) MeV, where the last term corresponds to the uncertainty in the world-average B$^+_\mathrm{c}$ mass.

2 data tables

Observation of the Bc(2S) and Bc(2S)* states and measurement of the Bc(2S) mass.

Observation of the Bc(2S) and Bc(2S)* states and measurement of the Bc(2S) mass.


Observation of the $\chi_\mathrm{b1}$(3P) and $\chi_\mathrm{b2}$(3P) and measurement of their masses

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 092002, 2018.
Inspire Record 1675256 DOI 10.17182/hepdata.85742

The $\chi_\mathrm{b1}$(3P) and $\chi_\mathrm{b2}$(3P) states are observed through their $\Upsilon$(3S) $\gamma$ decays, using an event sample of proton-proton collisions collected by the CMS experiment at the CERN LHC. The data were collected at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 80.0 fb$^{-1}$. The $\Upsilon$(3S) mesons are identified through their dimuon decay channel, while the low-energy photons are detected after converting to e$^+$e$^-$ pairs in the silicon tracker, leading to a $\chi_\mathrm{b}$(3P) mass resolution of 2.2 MeV. This is the first time that the $J =$ 1 and 2 states are well resolved and their masses individually measured: 10$\,$513.42 $\pm$ 0.41 (stat) $\pm$ 0.18 (syst) MeV and 10$\,$524.02 $\pm$ 0.57 (stat) $\pm$ 0.18 (syst) MeV; they are determined with respect to the world-average value of the $\Upsilon$(3S) mass, which has an uncertainty of 0.5 MeV. The mass splitting is measured to be 10.60 $\pm$ 0.64 (stat) $\pm$ 0.17 (syst) MeV.

2 data tables

Observation of the $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ and measurement of their masses.

Observation of the $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ and mass splitting measurement.


Measurement of b hadron lifetimes in pp collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 457, 2018.
Inspire Record 1632444 DOI 10.17182/hepdata.88921

Measurements are presented of the lifetimes of the B$^0$, B$^0_\mathrm{s}$, $\Lambda^0_\mathrm{b}$, and B$_\mathrm{c}^+$ hadrons using the decay channels B$^0\to$ J/$\psi$K*(892)$^0$, B$^0\to$J/$\psi$K$^0_\mathrm{S}$, B$^0_\mathrm{s}\to$J/$\psi \pi^+\pi^-$, B$^0_\mathrm{s}\to$J/$\psi\phi$(1020), $\Lambda^0_\mathrm{b}\to$J/$\psi\Lambda^0$, and B$_\mathrm{c}\to$J/$\psi\pi^+$. The data sample, corresponding to an integrated luminosity of 19.7 fb$^{-1}$, was collected by the CMS detector at the LHC in proton-proton collisions at $\sqrt{s}=$ 8 TeV. The B$^0$ lifetime is measured to be 453.0 $\pm$ 1.6 (stat) $\pm$ 1.8 (syst) $\mu$m in J/$\psi$K*(892)$^0$ and 457.8 $\pm$ 2.7 (stat) $\pm$ 2.8 (syst) $\mu$m in J/$\psi$K$^0_\mathrm{S}$, which results in a combined measurement of $c\tau_{\mathrm{B}^0} =$ 454.1 $\pm$ 1.4 (stat) $\pm$ 1.7 (syst) $\mu$m. The effective lifetime of the B$^0_\mathrm{s}$ meson is measured in two decay modes, with contributions from different amounts of the heavy and light eigenstates. This results in two different measured lifetimes: $c\tau_{\mathrm{B}^0_\mathrm{s} \to \mathrm{J}/\psi \pi^+\pi^-} =$ 502.7 $\pm$ 10.2 (stat) $\pm$ 3.4 (syst) $\mu$m and $c\tau_{\mathrm{B}^0_\mathrm{s} \to \mathrm{J}/\psi\phi(1020)} =$ 443.9 $\pm$ 2.0 (stat) $\pm$ 1.5 (syst) $\mu$m. The $\Lambda^0_\mathrm{b}$ lifetime is found to be 443.9 $\pm$ 8.2 (stat) $\pm$ 2.8 (syst) $\mu$m. The precision from each of these channels is as good as or better than previous measurements. The B$_\mathrm{c}^+$ lifetime, measured with respect to the B$^+$ to reduce the systematic uncertainty, is 162.3 $\pm$ 7.8 (stat) $\pm$ 4.2 (syst) $\pm$ 0.1 $(\tau_{\mathrm{B}^+})$ $\mu$m. All results are in agreement with current world-average values.

3 data tables

Measurement of b hadron lifetimes in pp collisions at $\sqrt{s}=8$TeV.

Measurement of b hadron lifetimes ratios in pp collisions at $\sqrt{s}=8$TeV.

Estimate $\Gamma_\mathrm{d}$ and $\Delta \Gamma_\mathrm{d}$ in pp collisions at $\sqrt{s}=8$TeV.